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Abstract
We estimate the number of street vendors in New York City. First, we summarize the process by which
vendors receive licenses and permits to operate legally in New York City. Second, we describe a survey
that was administered by the Street Vendor Project while distributing Coronavirus relief aid to vendors
operating in New York City both with and without a license or permit. Third, we review ratio estimation
and provide a theoretical justification based on the theory of point processes. Fourth, we use ratio
estimation to calculate the total number of vendors, finding approximately 23,000 street vendors operate
in New York City—20,500 mobile food vendors and 2,400 general merchandise vendors—with one third
located in just six ZIP Codes—11368 (16%), 11372 (3%), and 11354 (3%) in North and West Queens
and 10036 (5%), 10019 (4%), and 10001 (3%) in the Chelsea and Clinton neighborhoods of Manhattan.
Finally, we evaluate the accuracy of the ratio estimator when the distribution of vendors is explained by
a Poisson or Yule process, and we discuss several policy implications. In particular, our estimates suggest
the American Community Survey misses the majority of New York City street vendors.

1. Introduction

Street vendors are New York City’s smallest businesses, selling food and merchandise from carts, stalls,

and trucks throughout the five boroughs. They are an iconic part of the urban landscape and a thriving

sector of the local economy, contributing millions of dollars in government revenue through taxes, fines, and

fees.1 Perhaps most importantly, street vending historically benefits underserved communities, both because

vendors operate in neighborhoods with limited access to traditional stores and because vending is one of a

handful of occupations in which New Yorkers of all backgrounds, immigrants in particular, are able to achieve

economic mobility and a chance at the American dream (Burrows and Wallace 1998, chap. 42).

Yet despite their social and economic importance, little is known about the size and location of New York

City’s street vending population. This is because while local law requires street vendors to obtain licenses

and permits to operate legally, the number of licenses and permits are limited, resulting in a largely unknown

population of vendors that operate without a license or permit. These vendors are not easily identified from

administrative datasets, such as tax records or fines, and they can be difficult to locate for government
∗Thanks to Mohamed Attia, Eric Auerbach, Debipriya Chatterjee, David Kallick, Carina Kaufman-Gutierrez, Joseph Salvo,

Shamier Settle, Matthew Shapiro, Emerita Torres, and Anand Vidyashankar for discussion and feedback on the work described
in this paper.

1Fees from mobile food vending licenses and permits provide nearly a million dollars in revenue to New York City each year
(Mosher and Turnquist 2024). Fines paid by vendors provide approximately $200,000 each year according to data from the New
York City Office of Administrative Trials and Hearings.
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surveys, such as the American Community Survey. Nevertheless, understanding the size and location of New

York’s street vending population is crucial for informing policy and advocacy.

In this paper, we propose an estimate for the number of street vendors in New York City, including those

that operate without a license or permit. We present our work in four sections. In Section 2, we review the

process by which vendors receive permits and licenses, and we describe a survey administered by the Street

Vendor Project at the Urban Justice Center while distributing Coronavirus relief aid to vendors operating

both with and without a license or permit.

In Section 3, we use the fact that the number of licenses and permits are limited by law to construct a ratio

estimator for the number of street vendors. We then provide a theoretical justification of our estimates,

assuming the spatial distribution of survey respondents is representative and well-approximated by a family

of inhomogeneous Poisson processes. We find approximately 23,000 street vendors operate in New York City:

20,500 mobile food vendors and 2,400 general merchandise vendors. One third are located in just six ZIP

Codes: 11368 (16%), 11372 (3%), and 11354 (3%) in North and West Queens and 10036 (5%), 10019 (4%),

and 10001 (3%) in the Chelsea and Clinton neighborhoods of Manhattan.

In Section 4, we examine the validity of these assumptions. We evaluate whether the spatial distribution of

respondents is representative by comparing it to the American Community Survey and administrative data,

and we evaluate the Poisson process assumption by considering a more general model in which the arrival of

street vendors follows a pure birth process, of which the Poisson and Yule processes are special cases.

In Section 5, we discuss some implications of our estimates. In particular, we find that though the spatial

distribution of respondents matches the results of the American Community Survey, the two disagree on the

size of New York City’s street vending population. Our estimates suggest the American Community Survey

misses the majority of New York City street vendors.

2. Background and Survey Design

A street vendor is any individual who sells goods from a mobile vending unit instead of a store. We distinguish

between the mobile vending unit from which the goods are sold (i.e., the vending establishment) and the

individuals who own and/or operate that unit (i.e., the vendors). Note that an establishment refers to a single

vending unit. There may be multiple vendors associated with any establishment, and multiple establishments

may be owned by a single individual or firm.2

We limit our analysis to two types of street vendors: mobile food vendors—vendors who sell food items such

as sandwiches, drinks, and cut fruit—and general merchandise vendors—vendors who sell merchandise items

such as electronics, clothing, and accessories. We refer to these vendors as food vendors and merchandise

vendors, respectively. In Section 2.1, we review the process by which vendors receive permits and licenses
2For example, suppose Sally owns the business Sally’s Salads, which consists of two food trucks, each staffed by three employees.
Then Sally’s Salads counts as one business, two establishments, and seven vendors.
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as required by law. In Section 2.2, we describe a survey administered by the Street Vendor Project while

distributing Coronavirus relief aid to vendors operating in New York City both with and without a license or

permit.

2.1 Background

A long list of rules determines the individuals, locations, and time periods during which vendors can legally

sell their goods in New York City. Most relevant is the fact that a merchandise vendor requires a license to

operate legally, and a food vendor requires both a license and a permit. The number of food permits and

merchandise licenses are limited by law: 5,100 permits and 853 general merchandise licenses are available.

Mobile food vending licenses are not limited. Note that a mobile food vending permit is issued to an individual

or business to allow for the sale of food from a specific mobile food vending unit, such as a cart or truck. A

mobile food vending license authorizes an individual to prepare or serve food from a permitted mobile food

vending unit.3

There are several types of mobile food vendor permits with varying restrictions. Of the 5,100 permits available,

200 are borough permits that limit vendors to one of the five boroughs; 100 are reserved for veterans or

vendors with a disability; 1,000 are seasonal and valid only from April to October; 1,000 are green cart

permits that limit vendors to selling fruit, vegetables, plain nuts, and water; and 2,800 are unrestricted.

Multiple individuals with food vendor licenses can legally operate from one permitted food vending unit.

Merchandise licenses are renewed annually, while food licenses and permits are renewed biennially.

There are three relevant exceptions to these rules. The first exception is that merchandise vendors who are

veterans are not subject to the limit of 853 licenses. According to data obtained by Mosher and Turnquist

(2024), there are approximately 1,000 licensed merchandise vendors who are veterans in New York City. We

assume the number of veterans selling merchandise without a license is negligible.

The second exception is First Amendment vendors. A First Amendment vendor sells expressive merchandise

such as newspapers, books, and art. Expressive merchandise is considered free speech and protected under

the First Amendment of the U.S. Constitution so that the number of First Amendment vendors cannot be

restricted by law.

The final exception are concessionaires that operate on New York City parkland through an NYC Parks permit

or license. According to the New York City Department of Parks and Recreation, there are approximately

400 concessions within New York City parks. Many offer food services, ranging from food carts to restaurants.

We do not consider First Amendment vendors or park concessionaires in this paper. Our estimates are limited

to food and merchandise vendors operating outside of parks.
3Note that our estimate reflects the number of street vendors as of 2021, prior to the implementation of Local Law 18 of 2021,
which was enacted concurrently. Local Law 18 made several changes to the license and permit process. These changes do not
impact our estimates and therefore are not discussed in this paper.
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2.2 Survey Design

The Street Vendor Project (SVP), part of the Urban Justice Center, is a non-profit organization that advocates

on behalf of New York City street vendors. SVP administered a survey to approximately 2,000 street vendors

while distributing Coronavirus relief aid in 2021. The aid was a one-time payment of $1,000, available to any

individual that owned, operated, or was otherwise employed by a street vending business in New York City

between 2020 and 2021. First Amendment vendors were also eligible. There were no limits based on the size

of the business, the number of sales, or whether licensed and/or permitted. All individuals eligible for aid

were invited to complete a survey.

The population of street vendors estimated in this paper is the population eligible for aid (as determined by

SVP) that self-identifies as either a food or merchandise vendor. SVP found aid-eligible individuals through

membership lists, referrals, and canvassing operations in which SVP affiliates visited neighborhoods. Survey

operations continued until $2,415,000 in funds were distributed, yielding 2,060 responses.

The survey included 100 questions and was conducted in eight different languages: Arabic, Bangla, Cantonese,

English, French, Mandarin, Spanish, Tibetan, and Wolof.4 The survey items solicited a variety of information

from vendors, such as logistical information (e.g., vending location, residential location, and frequency of

operation), economic information (e.g., items sold, income, and expenses), and demographic information

(e.g., age, race, ethnicity, and immigration status). Most relevant is the fact that respondents classified

themselves by the goods they sold (e.g., food vendors, merchandise vendors, First Amendment vendors,

etc.), and respondents indicated whether they had the relevant licenses and permits to vend. Of the 2,060

responses, 1,400 identified as food vendors and 559 as merchandise vendors. The remaining 101 respondents

were predominantly First Amendment Vendors, which we exclude from our analysis.

Of the 1,400 food vendors, 349 (25%) indicated they had a permit to vend. Of the 559 merchandise vendors,

505 were not veterans, of which 308 (61%) indicated they had a license to vend. The number of respondents is

listed by neighborhood in Section 7.1, Table 1. (Neighborhoods with few respondents are grouped together.)

A map of the number of respondents by ZIP Code Tabulation Area (ZIP Code) is shown in the top left panel

of Section 7.2, Figure 1. Approximately five percent of vendors did not identify their vending location. These

vendors are included in the New York City total, but they are excluded from the neighborhood estimates

in Table 1 and Figure 1. (For this reason, the Respondent and Population columns do not sum exactly to

the New York City total.) Veteran merchandise vendors are excluded entirely from Table 1 and Figure 1,

although these vendors are reflected in our overall estimate of 23,000 vendors.
4Vendors who spoke other languages, such as Dari, Farsi, Russian, and Turkish, typically spoke English with a high level of
fluency, and those surveys were conducted in English. Similarly, vendors who spoke indigenous languages from Latin America,
such as Nahuatl or Quechua, often spoke Spanish with a high level of fluency.
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3. Methodology and Data Analysis

We estimate approximately 23,000 street vendors operate in New York City: 20,500 mobile food vendors and

2,400 general merchandise vendors. We arrive at the estimate by using ratio estimation, which leverages the

fact that the number of licenses and permits are limited by local law.

In Section 3.1, we provide a simple explanation of ratio estimation, which is intended to be accessible to a

general readership. In Section 3.2, we provide a theoretical justification of our estimates based on the theory

of point processes, which, while more technical, is intended to provide a somewhat general argument for

ratio estimation with spatial data when a design-based approach cannot be justified. Inference is conducted

using increasing domain asymptotics, and the details are outlined in Section 7.3. In Section 3.3, we apply the

methodology to the survey data discussed in Section 2.2.

3.1 Ratio Estimation

Ratio estimation is a common approach for estimating the size of a population. See Cochran (1978) and Hald

(1998, chap. 16) for a historical discussion and Lohr (2021, chap. 4) for an introduction. We provide a simple

explanation based on cross-multiplication, also called the rule of three. The purpose is to highlight the main

assumption.

Consider a fixed region A, and let Ni(A) denote the number of individuals in region A of type i. To fix ideas,

let A be New York City, let i = 0 indicate mobile food vendors with a permit, and let i = 1 indicate mobile

food vendors without a permit. Also let ni(A) denote the number of respondents of type i.

We observe N1(A), n1(A), and n0(A) from which we estimate θ(A) = E [N0(A)], the expected number of

vendors without a permit. The expected number of mobile food vendors with or without a permit is then

τ(A) = θ(A) + N1(A).

The ratio estimator of θ(A) is

θ̂(A) = N1(A) n0(A)
n1(A) .

It is called the ratio estimator because it depends on the ratio of random variables n0(A) / n1(A). (The total

number of permitted vendors, N1(A), is considered fixed.) The estimator is accurate when the response rate,

p, is approximately the same for each type, i.e.,

p ≈ n0(A)
N0(A) ≈ n1(A)

N1(A) ,

in which case θ̂(A) is the solution for N0(A) in terms of N1(A), n1(A), and n0(A), obtained by cross-

multiplication.

The main assumption of ratio estimation is that the survey data are representative in the sense that the

response rate does not depend on whether a mobile food vendor has a permit. If we further assume that the
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response rate does not vary by subregion, we can also estimate the total number of mobile food vendors by

subregion. For example, suppose the response rate in subregion B ⊂ A is also approximately equal to p, e.g.,

p ≈ n1(A)
N1(A) ≈ n0(B)

N0(B) .

Then we can estimate θ(B) by the subregion estimator

θ̃(B) = N1(A) n0(B)
n1(A) ,

where θ̃(B) is the solution for N0(B) in terms of N1(A), n1(A), and n0(B).

The subregion estimator is necessary when N1(B) is not observed and θ̂(B) cannot be calculated directly.

This is the case with the survey data described in Section 2.2. We observe N1(A), the number of permits

city-wide (i.e., within region A), but not N1(B), the number of permits within subregion B. (We also observe

n0(B) and n1(B).)

The subregion estimator θ̃(B) works by replacing the term N1(B) in the ratio estimator θ̂(B) with the

estimate

Ñ1(B) = N1(A) n1(B)
n1(A) .

The estimate Ñ1(B) is also used to estimate the total number of mobile food vendors expected in subregion

B. That is, we estimate τ(B) = θ(B) + N1(B) with

τ̃(B) = θ̃(B) + Ñ1(B) = N1(A) (n0(B) + n1(B))
n1(A) .

3.2 Model

We provide a point process justification of the ratio estimation procedure described in Section 3.1. The

purpose is to more closely examine the underlying assumptions and derive the standard errors of the estimates.

Let {Πi} denote a family of inhomogeneous spatial Poisson processes referencing the location x ∈ A ⊂ R2 of

each street vendor at the time the survey was conducted. The index i denotes the status of the vendor. As

in Section 3.1, we fix ideas by letting i = 0 indicate mobile food vendors with a permit and i = 1 indicate

mobile food vendors without a permit.

The Poisson process assumption may be justified by the law of rare events. New York City can be partitioned

into a large number of theoretically vendable locations. Whether a vendor is located within a partition has a

vanishingly small probability, such that the number of vendors in any area is well approximated by a Poisson

distribution. This approximation is accurate even if these probabilities are weakly dependent. For example,

see Freedman (1974), Chen (1975), and Serfling (1975). Other justifications are possible. For example, see
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Section 4.2 for a justification of the Poisson process based on the theory of birth processes.

Let {λi} denote the mean measures of {Πi} so that the number of individuals in any subregion B ⊆ A, Ni(B),

is distributed Poisson with mean
∫

B
λi(x) dx, i.e.,

Ni(B) ∼ Poisson
(∫

B

λi(x) dx

)
.

We assume each individual responds independently to the survey with probability pi(x) such that by

Campbell’s Theorem (Kingman 1992), the number of respondents ni(B) is distributed Poisson with mean∫
B

λi(x) pi(x) dx. i.e.,

ni(B) ∼ Poisson
(∫

B

λi(x) pi(x) dx

)
.

To determine the number of street vendors in region B ⊆ A, we estimate θ(B) = E [N0(B)] =
∫

B
λ0(x) dx, the

expected number of vendors without permits. The total expected in region B is then τ(B) = N1(B) + θ(B).

In Section 3.1, we described the main assumption of ratio estimation: that the status and spatial distribution

of the respondents is representative. We now make this statement precise. We assume that pi(x) can be

decomposed into a constant that does not depend on i or x plus a spatially varying error term, pi(x) = p + ϵi(x),

and the error term is orthogonal to the corresponding mean measure. i.e.,

⟨λi, ϵi⟩ =
∫

B

λi(x) ϵi(x) dx = 0 .

It follows that

ni(B) ∼ Poisson
(

p

∫
B

λi(x) dx

)
so that by conditioning on N1(B), we arrive at the following probability model for the number of respondents

with and without permits

n0(B) ∼ Poisson
(
p θ(B)

)
n1(B) | N1(B) ∼ Binomial

(
p, N1(B)

)
.

The maximum likelihood estimates for p and θ(A) are

p̂ = n1(A)
N1(A) and θ̂(A) = N1(A) n0(A)

n1(A) .

Using increasing domain asymptotics, the estimator is asymptotically normal with mean θ(A) and standard

error

SE[θ̂(A)] = θ(A)

√
1

p θ(A) + 1 − p

p N1(A) .
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Substituting p̂ and θ̂(A) for p and θ(A) yields the following plug-in estimator for the standard error,

ŜE[θ̂(A)] = N1(A) n0(A)
n1(A)

√
1

n0(A) + 1
n1(A) − 1

N1(A) .

See Section 7.3.2 for details.

The maximum likelihood estimate for θ(B) is

θ̃(B) = N1(A) n0(B)
n1(A) ,

which is asymptotically normal with mean θ(B) and standard error

SE[θ̃(B)] = θ(B)

√
1

p θ(B) + 1 − p

p N1(A) .

The plug-in estimator for the standard error is

S̃E[θ̃(B)] = N1(A) n0(B)
n1(A)

√
1

n0(B) + 1
n1(A) − 1

N1(A) .

To determine the subregion total τ(B) = θ(B) + N1(B), we estimate θ(B) and N1(B) with θ̃(B) and

Ñ1(B) = N1(A) n1(B) / n1(A), yielding

τ̃(B) = θ̃(B) + Ñ1(B) = N1(A) (n0(B) + n1(B))
n1(A) = N1(A) (n0(B) + n1(B))

n1(B) + n1(A\B)

where A\B denotes the compliment of subregion B.

The asymptotic standard error is

SE[τ̃(B)] = θ(B)

√
1

p θ(B) + 1 − p

p N1(A)

(
1 + N1(B) N1(A\B)

θ(B)2

)
,

and the plug-in estimator is

S̃E[θ̃(B)] = N1(A) n0(B)
n1(A)

√
1

n0(B) +
(

1
n1(A) − 1

N1(A)

)(
1 + n1(B) n1(A\B)

n0(B)2

)
.

See Section 7.3.3 for details.
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3.3 Data Analysis

We use the methodology described in Section 3.1 and 3.2 to estimate the number of street vendors in New

York City. According to the survey data described in Section 2.2, n1(A) = 349 mobile food vendor respondents

indicated they had a permit, and n0(A) = 1, 051 indicated they did not. Since there are N1(A) = 5, 100

permits available, it follows that the number of vendors without permits is 15, 350 ≈ 5, 100 × 1, 051 / 349.

Combined with the 5, 100 permitted vendors, the total number of mobile food vendors is approximately

20, 500.

By similar reasoning—i.e., exploiting the fact that the number of general merchandise licenses is limited

for non-veterans—the number of non-veteran merchandise vendors is estimated to be approximately 1, 400.

When combined with the estimated 1, 000 veteran merchandise vendors (see Section 2.1) and 20, 500 food

vendors, the total number of street vendors is approximately 23, 000.

Estimates for select subregions are listed in Section 7.1, Table 1. We find that approximately one quarter

of street vendors are located in the Manhattan neighborhoods of Chelsea, Clinton, and Lower Manhattan.

Another quarter is located in West and North Queens. We also report the margin of error (i.e., two standard

errors, half of the width of a 95% confidence interval).

We check these estimates by comparing them to a second, independent assessment conducted by the Street

Vendor Project in the Bronx on May 13 and 15, 2022, in which the number of street vendors was documented

through on-the-ground observations. The independent assessment identified 188 total street vendors near

Fordham Road (Fordham Road BID and Street Vendor Project 2024). According to the survey data, 17

respondents indicated that they operate near Fordham Road, yielding an estimate of 152 street vendors total

with a standard error of 54. We conclude this estimate is consistent with the 188 street vendors counted

independently by Fordham Road BID and Street Vendor Project (2024).

4. Model Validation

We make two assumptions in Section 3. The main assumption is that the status and spatial distribution of

the respondents is representative. This assumption is necessary to ensure the ratio estimator is accurate in

large samples (i.e., consistent). A secondary assumption is that the spatial distribution of vendors is well

described by a family of inhomogeneous spatial Poisson processes. This assumption is necessary to derive the

standard errors.

In this section, we examine each assumption. Since neither can be evaluated from the survey data alone, we

consider additional information. In Section 4.1, we compare the spatial distribution of the respondents to

data from the New York City Office of Administrative Trials and Hearings and the American Community

Survey. In Section 4.2, we model the arrival of street vendors as a pure birth process, and we derive a more

general formula for the standard errors in which the amount of extra-Poisson variation can be determined by
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the number of vendors that cluster within markets.5

4.1 Representativeness

The main assumption in Section 3 is that the status and spatial distribution of the respondents is representative

(i.e., the response probability is spatially uncorrelated with the mean measure). If this assumption holds, then

the ratio estimator is consistent for a wider class of point processes in which Campbell’s Theorem applies, not

just the Poisson process. See Daley and Vere-Jones (2007) for a general statement of Campbell’s Theorem.

If this assumption is violated, then θ̂(A) may be inconsistent. For example, if respondents are more likely

to come from locations in which a higher proportion of vendors have permits, then the ratio n0(A) / n1(A)

would not be representative, and θ̂(A) would likely underestimate θ(A) even in large samples.

We think this assumption is reasonable because the Street Vendor Project canvassed New York City to

distribute a large amount of relief aid. We argue that trust in SVP and its mission, along with the aid,

removed many barriers that typically prevent survey operations from reaching hard-to-reach populations.

Instead, nonresponse reflects chance variation in the personal circumstances of a vendor that are largely

unrelated to location.

Nevertheless, it is possible that canvassing operations systematically missed locations, and these missed

locations may be revealed by examining other data sources. We thus compare the spatial distribution of

vending locations reported by respondents to the spatial distribution of vendors who allegedly violated

street vending laws during the year 2021. We consider the location of an individual’s first violation in

2021, reported in administrative data from the NYC Office of Administrative Trials and Hearings (OATH)

(accessed 2024-04-03). We also compare the residencies reported by the respondents to the residencies of

Door-To-Door Sales Workers, News And Street Vendors, And Related Workers (Standard Occupational

Classification 41-9091) estimated in the 2017-2021 American Community Survey (ACS) Public Use Micro

Sample from the U.S. Census Bureau (accessed 2022-12-22).

These comparisons are visualized in Section 7.2, Figure 1. We find the spatial distribution of vending locations

largely agree (top panels) as do the spatial distribution of the residencies (bottom panels), although there are

several small discrepancies. For example, the OATH data suggest a larger percentage of vendors work in

South Brooklyn (Coney Island and Brighton Beach) than captured by the Street Vendor Project survey, and

the ACS data suggest a larger percentage of street vendors live in South Queens (Rockaway). However, both

the OATH and ACS data suggest these locations reflect only a small percentage of New York City vendors,

and thus any resulting undercount is likely to have little impact on our overall estimate.

We also note that even if this discrepancy suggests a location was missed by the Street Vendor Project,
5The results of this section can also be derived from a spatial Negative Binomial Lévy Process in a manner that mirrors Section
3.2. The advantage of the birth process approach taken in Section 4.2 is that it provides a plausible explanation for why the
Poisson assumption made in Section 3.2 may not hold in practice.
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our main assumption is not necessarily violated. That is because the undercount in some areas may be

compensated by an overcount in others (e.g., the Upper East Side of Manhattan or East Brooklyn) such that

our overall estimate is still accurate.

4.2 Overdispersion

The second assumption in Section 3.2 is that the spatial distribution of vendors is well approximated by a

family of inhomogeneous Poisson processes. We consider this assumption secondary because the consistency

of θ̂(A) holds under a wide class of point processes described in Section 4.1. That said, the standard errors

derived in Section 3.2 do not necessarily hold when the Poisson assumption is violated.6

We think the Poisson assumption is reasonable because a wide class of data generating processes are well-

approximated by the Poisson process under the law of rare events as discussed in Section 3.2. Nevertheless, to

evaluate how the standard errors might change when this assumption is violated, we consider a general model

that describes how street vendors arrived at their present locations. Specifically, we consider two families of

pure birth processes: one with a constant arrival rate (or “birth rate”) in which the Poisson assumption holds

and one with a linear arrival rate in which the Poisson assumption does not hold.

Suppose vendors serve customers who congregate at fixed locations, which we call markets. Let M(B) denote

the number of markets in any subregion B ⊆ A ⊂ R2. If every market is in a competitive equilibrium such

that the expected profit for a new vendor is the same at each market, then the time between vendor arrivals

at each market may be well-approximated by an exponential distribution with a constant arrival rate λi.7

Further suppose each market starts with one vendor at t = 0. Then at the time the survey was conducted

(t = 1), the number of vendors, Ni(B), would follow a Poisson distribution with rate
∫

B
λi(x) dx = λi M(B),

and the results of Section 3.2 hold.

Now suppose instead that larger markets grow faster than smaller markets, an empirical phenomenon known

as preferential attachment. Then the time between vendor arrivals may be better approximated by an

exponential distribution with a linear arrival rate, or Yule process (Yule 1925). That is, let N t
i (B) denote the

number of vendors in subregion B at time t so that the time between vendor arrivals at each market follows an

exponential distribution with rate λi N t
i (B). If we assume further that each market started with one vendor

at t = 0, then the number of vendors at the time the survey was conducted (t = 1), Ni(B), would follow a

negative binomial distribution with mean µi(B) = exp(λi) M(B) and variance µi(B)
(
µi(B) − M(B)

)
/ M(B).

i.e.,

Ni(B) ∼ Negative Binomial
(

µi(B), µi(B) µi(B) − M(B)
M(B)

)
where we parameterize the negative binomial distribution by its mean and variance. In this case, Ni(B)
6The ratio estimator may no longer be asymptotically efficient as well. In Section 7.3, we show that under the Poisson process
assumption, the ratio estimator maximizes the likelihood, which implies the ratio estimator is asymptotically efficient. However,
the ratio estimator may not maximize the likelihood when the Poisson process assumption is violated.

7Arriving vendors may form a new vending establishment or sell their labor to an existing establishment.
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exhibits extra-Poisson variation, and the results of Section 3.2 do not hold. See Ross (2014, chap. 6) for

details.8

To derive the standard errors, suppose a portion of the markets, p, were selected for the survey so that

ni(B) ∼ Negative Binomial
(

p µi(B), p µi(B) µi(B) − M(B)
M(B)

)
.

The conditional distribution of n1(B) given N1(B) is then

n1(B) | N1(B) ∼ Negative Hypergeometric
(
N1(B) − 1, M(B) − 1, p M(B)

)

with conditional mean and variance

E [n1(B) | N1(B)] = p N1(B) and V
(
n1(B) | N1(B)

)
= w1 p (1 − p) N1(B)

so that under increasing domain asymptotics, the ratio estimator

θ̂(A) = N1(A) n0(A)
n1(A)

is asymptotically normal with mean θ(A) = µ0(A) and standard error

SE[θ̂(A)] = θ(A)

√
w0

(
1

p θ(A)

)
+ w1

(
1 − p

p N1(A)

)
where

w0 = θ(A) − M(A)
M(A) and w1 = N1(A) − M(A)

M(A) + 1 .

See Section 7.3.4 for details. Note that the weights w0 and w1 depend on A, although this dependence is not

reflected in the notation.

The standard error derived in this section for θ̂(A) is identical to the standard error for θ̂(A) from Section 3.2

except for the weights w0 and w1. These weights are the result of the extra-Poisson variation induced by

preferential attachment—that is, the linear “birth” rate in which the arrival of new vendors is proportional to

the number of vendors in the market.

The weights w0 and w1 correspond to the relative number of vendors without permits and with permits per

market respectively. These weights cannot be estimated from the survey data alone. However, we believe

that θ(A) and N1(A) are no more than 10 times larger than M(A). It follows that w0 and w1 are less than
8Note that we define the negative binomial and negative hypergeometric distributions as the total number of trials required
to get a predetermined number of successes. The negative binomial assumes sampling with replacement, while the negative
hypergeometric distribution assumes sampling without replacement.
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9, and thus the standard errors from Section 3.2 and the margins of error from Table 1 are at most be 3

times larger if the Poisson assumption is violated and the Yule process holds. We suspect this bound is

conservative, however, and the typical market only contains one or two vendors.

The same behavior is exhibited by the subregion estimator of θ(B),

θ̃(B) = N1(A) n0(B)
n1(A) ,

which is asymptotically normal with mean θ(B) = µ0(B) and standard error

SE[θ̃(B)] = θ(B)

√
v0

(
1

p θ(B)

)
+ w1

(
1 − p

p N1(A)

)
.

where

v0 = θ(B) − M(B)
M(B) .

The estimator for the subregion total, τ̃(B) = θ̃(B) + Ñ1(B), is also asymptotically normal with mean τ(B)

and standard error

SE[τ̃(B)] = θ(B)

√√√√v0

(
1

p θ(B)

)
+
(

v1 N1(B) (N1(A\B) − θ(B))2 + v2 N1(A\B) (N1(B) + θ(B))2

N1(A) θ(B)2

)(
1 − p

p N1(A)

)

where

v1 = N1(B) − M(B)
M(B) + 1 and v2 = N1(A\B) − M(A\B)

M(A\B) + 1 .

See Section 7.3.4 for details.

5. Discussion

We conclude by discussing the implications of our estimates. In particular, we assess the completeness of

the New York City Office of Administrative Trials and Hearings (OATH) and American Community Survey

(ACS) data. Our estimates suggest that while both data sets are spatially representative, they miss the

majority of street vendors. We provide several explanations for this discrepancy.

We estimate 23,000 vendors work in New York City. In comparison, the 2017-2021 ACS estimates 4,634

individuals work the occupation of Door-To-Door Sales Workers, News And Street Vendors, And Related

Workers in New York City. This suggests that according to the ACS, there are at most 4,634 street vendors

in New York City, and thus our finding indicates that the ACS estimate misses 80% of street vendors or more.

A fairer comparison might account for the fact that the standard error of our estimate is approximately 1,000,

and the standard error of the ACS estimate is approximately 488, which we obtained from the replicate

weights. Using the lower limit of a 95% confidence interval for our estimate (21,000) and the upper 95%

13



confidence limit for the ACS estimate (5,610), our findings suggest the ACS misses roughly three quarters of

street vendors or more.

Note the importance of the assumptions stated in Section 3.2 since other derivations of ratio estimation may

imply smaller or larger standard errors, from which we might conclude the ACS misses a smaller or larger

portion of the street vending population. For example, if the standard errors from Section 4.2 hold, then the

confidence intervals would overlap if there were more than 300 vendors in the average market. We believe

this is highly unlikely, suggesting the two estimates are inconsistent even under overdispersion.

Additional evidence comes from the OATH data, which indicate approximately 2,500 (unique) vendors are

summoned to court each year for violating vending laws. If the ACS estimate holds, then more than half of

vendors are summoned to court each year. If our estimate holds, then approximately one in ten vendors are

summoned to court each year. We believe the latter is more realistic.

There may be several reasons why our estimates are significantly larger than the ACS. The fact that the

Street Vendor Project distributed relief aid may have encouraged respondents who are unlikely to respond to

the ACS. Moreover, the Street Vendor Project, through membership lists, referrals, and canvassing may have

covered individuals missed by the Census Bureau’s sampling frame.

Another explanation is that the Street Vendor Project survey and the ACS may be measuring different

populations or concepts. For example, the ACS estimate reflects the average number of vendors between 2017

and 2021, while our estimate reflects 2020 and 2021. For another example, the Census Bureau determines the

occupation of an ACS respondent by autocoding responses to write-in questions. It is possible that the Street

Vendor Project’s definition of a vendor is more inclusive. Street vending often provides supplemental income,

and thus the discrepancy may reflect the broader challenge of studying the gig economy. In this case, either

estimate may be relevant, depending on the intended use case.
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7. Appendix

7.1 Tables

Table 1: Number of Street Vendors1

Respondents Population Margin of Error
Bronx

Bronx Park and Fordham 68 757 237
Southeast Bronx 28 385 159

High Bridge and Morrisania 20 233 126
Central Bronx 9 96 81

Other Bronx 31 264 133
Total 156 1,735 373

Brooklyn
Northwest Brooklyn 46 613 202

Bushwick and Williamsburg 41 433 174
Sunset Park 26 344 152

Flatbush 19 242 126
Borough Park 10 134 93

Southwest Brooklyn 6 64 65
Other Brooklyn 28 374 158

Total 176 2,205 415

Manhattan
Chelsea and Clinton 341 3,289 477

Lower Manhattan 105 1,250 278
Gramercy Park and Murray Hill 97 1,062 266

Lower East Side 65 808 226
Greenwich Village and Soho 61 726 216

Upper East Side 56 534 187
Central Harlem 46 483 181

Inwood and Washington Heights 33 459 175
Upper West Side 48 429 165

East Harlem 38 425 171
Total 890 9,464 872

Queens
West Queens 396 4,650 690

North Queens 67 896 248
Northwest Queens 23 312 143

Jamaica 14 181 110
Other Queens 31 406 167

Total 531 6,445 858

Staten Island
Total 4 58 57

New York City
Total 1,905 21,857 1,941

1 This table provides estimates for the number of mobile food vendors and non-veteran
general merchandise vendors. The number of veteran general merchandise vendors is
approximately 1,000. First amendment vendors and vendors in NYC Parks are not
included.
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7.2 Figures

Figure 1: Location of Street Vendors

vending location of respondents
source: Street Vendor Project 1 10 30 100

vending location of individuals summoned
to court for first vending−related violation
source: OATH 2021 1 10 30 100

residency of respondents
source: Street Vendor Project 1 10 30 100

residency of door−to−door, news
and street vendors, and related
source: ACS 2017−2021 30 100 300

These maps compare the spatial distribution of respondents (left) to the distribution of vendors
suggested by administrative data (New York City Office of Administrative Trials and Hearings
(OATH), top right) and federal data (American Community Survey (ACS), bottom right).
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7.3 Estimation and Standard Errors

7.3.1 Preliminaries We calculate estimates and standard errors using increasing domain asymptotics.
That is, we partition the region A ⊂ R2 into I disjoint sets, {Ai}I

i=1, such that A = ∪I
i=1Ai, and we consider

the behavior of the model

n0(Ai) ∼ Poisson
(
p θ(Ai)

)
n1(Ai) | N1(Ai) ∼ Binomial

(
p, N1(Ai)

)
as I → ∞.

Let n0(A) =
∑I

i=1 n0(Ai), n1(A) =
∑I

i=1 n1(Ai), and N1(A) =
∑I

i=1 N1(Ai) so that the likelihood can be
written

LI({θ(Ai)}I
i=1, p) =

I∏
i=1

exp(−p θ(Ai)) (p θ(Ai))n0(Ai) 1
n0(Ai)!

(
N1(Ai)
n1(Ai)

)
pn1(Ai) (1 − p)N1(Ai)−n1(Ai)

= pn1(A)+n0(A) (1 − p)N1(A)−n1(A)
I∏

i=1
exp(−p θ(Ai)) θ(Ai)n0(Ai) 1

n0(Ai)!

(
N1(Ai)
n1(Ai)

)
.

The maximum likelihood estimates, obtained from solving the score function

0 set= ∇ log LI({θ(Ai)}I
i=1, p) =


∂

∂θ(Ai)
log LI({θ(Ai)}I

i=1, p) = −p + n0(Ai)
θ(Ai)

∂

∂p
log LI({θ(Ai)}I

i=1, p) = n0(A) + n1(A)
p

− N1(A) − n1(A)
1 − p

−
∑I

i=1 θ(Ai)

are
θ̂(Ai) = N1(A) n0(Ai)

n1(A) and p̂ = n1(A)
N1(A) .

7.3.2 Ratio Estimator Under the conditions of Section 7.3.1, the maximum likelihood estimate of
θ(A) =

∑I
i=1 θ(Ai) is the ratio estimator

θ̂(A) =
I∑

i=1
θ̂(Ai) = N1(A) n0(A)

n1(A) .

The asymptotic standard error of θ̂(A) can be obtained by noting that under the Lyapunov Central Limit
Theorem, [

p θ(A) 0

0 p (1 − p) N1(A)

]−1/2 [
n0(A) − p θ(A)

n1(A) − p N1(A)

]
converges to a standard bivariate normal distribution as I → ∞.

It follows from the Delta Method that when I is large,

θ̂(A) ∼̇ Normal

θ(A),
[
p−1 − θ(A)

p N1(A)

] [p θ(A) 0

0 p (1 − p) N1(A)

] p−1

− θ(A)
p N1(A)


 .
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The asymptotic standard error simplifies to

SE[θ̂(A)] = θ(A)

√
1

p θ(A) + 1 − p

p N1(A) .

Substituting θ̂(A) and p̂ for θ(A) and p yields a plug-in estimate of the standard error

ŜE[θ̂(A)] = N1(A) n0(A)
n1(A)

√
1

n0(A) + 1
n1(A) − 1

N1(A) .

7.3.3 Subregion Estimator Now consider a subregion B ⊂ A that can be written as the union of a
subsequence of partition elements {Akj }J

j=1, such that B = ∪J
j=1Akj and kj is strictly increasing in j. Under

the conditions of Section 7.3.1, the maximum likelihood estimate of θ(B) =
∑J

j=1 θ(Akj ) is the subregion
estimator

θ̃(B) =
J∑

j=1
θ̂(Akj

) = N1(A) n0(B)
n1(A) .

The asymptotic standard error of θ̃(B) can be obtained as in Section 7.3.2 by noting that under the
Lyapunov Central Limit Theorem,[

p θ(B) 0

0 p (1 − p) N1(A)

]−1/2 [
n0(B) − p θ(B)

n1(A) − p N1(A)

]

converges to a standard bivariate normal distribution as J → ∞.

It follows from the Delta Method that when J is large,

θ̃(B) ∼̇ Normal

θ(B),
[
p−1 − θ(B)

p N1(A)

][p θ(B) 0

0 p (1 − p) N1(A)

] p−1

− θ(B)
p N1(A)


 .

The asymptotic standard error simplifies to

SE[θ̃(B)] = θ(B)

√
1

p θ(B) + 1 − p

p N1(A) .

Substituting θ̃(B) and p̂ for θ(B) and p yields a plug-in estimate of the standard error

S̃E[θ̃(B)] = N1(A) n0(B)
n1(A)

√
1

n0(B) + 1
n1(A) − 1

N1(A) .

The expected total in subregion B is θ(B) + N1(B). When N1(B) is not observed, it can be estimated by

Ñ1(B) = N1(A) n1(B)
n1(A) .

The estimated total in subregion B is then

τ̃(B) = θ̃(B) + Ñ1(B) = N1(A) (n0(B) + n1(B))
n1(A) = N1(A) (n0(B) + n1(B))

n1(B) + n1(A\B)
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where A\B denotes the compliment of subregion B.

As before, the asymptotic standard error of τ̃(B) can be obtained by noting that
p θ(B) 0 0

0 p (1 − p) N1(B) 0

0 0 p (1 − p) N1(A\B)


−1/2


n0(B) − p θ(B)

n1(B) − p N1(B)

n1(A\B) − p N1(A\B)


converges to a standard trivariate normal distribution as J → ∞.

It follows from the Delta Method that when J is large, τ̃(B) is approximately normal with mean
θ(B) + N1(B) and variance

[
p−1 N1(A\B) − θ(B)

p N1(A) −θ(B) + N1(B)
p N1(A)

]
p θ(B) 0 0

0 p (1 − p) N1(B) 0

0 0 p (1 − p) N1(A\B)





p−1

N1(A\B) − θ(B)
p N1(A)

−θ(B) + N1(B)
p N1(A)


.

The asymptotic standard error simplifies to

SE[τ̃(B)] = θ(B)

√
1

p θ(B) + 1 − p

p N1(A)

(
1 + N1(B) N1(A\B)

θ(B)2

)
.

Substituting θ̃(B), p̂, Ñ1(B), and Ñ1(A\B) for θ(B), p, N1(B), and N1(A\B) yields a plug-in estimate of
the standard error

S̃E[θ̃(B)] = N1(A) n0(B)
n1(A)

√
1

n0(B) +
(

1
n1(A) − 1

N1(A)

)(
1 + n1(B) n1(A\B)

n0(B)2

)
.

7.3.4 Overdispersion Finally, consider the behavior of the estimators

θ̂(A) = N1(A) n0(A)
n1(A) and p̂ = n1(A)

N1(A) .

under the model

n0(A) ∼ Negative Binomial
(

p θ(A), p θ(A) θ(A) − M(A)
M(A)

)
n1(A) | N1(A) ∼ Negative Hypergeometric

(
N(A) − 1, M(A) − 1, p M(A)

)
.

Note that we define the negative binomial and negative hypergeometric distributions as the total number of
trials required to get a predetermined number of successes when sampling with and without replacement,
respectively. We parameterize the negative binomial distribution by its mean and variance. The mean and
variance of n1(A) given N1(A) are

E [n1(A) | N1(A)] = p N1(A) and V
(
n1(A) | N1(A)

)
= w1 p (1 − p) N1(A) .

We proceed using increasing domain asymptotics as in Sections 7.3.1 and 7.3.2. We consider A to be the
union of I disjoin sets, {Ai}I

i=1, and we are interested in the behavior of θ̂(A) and p̂ as I → ∞. Note again
that n0(A) =

∑I
i=1 n0(Ai), n1(A) =

∑I
i=1 n1(Ai), N1(A) =

∑I
i=1 N1(Ai) so that under the Lyapunov
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Central Limit Theorem, w0 p θ(A) 0

0 w1 p (1 − p) N1(A)


−1/2 [

n0(A) − p θ(A)

n1(A) − p N1(A)

]

converges to a standard bivariate normal distribution as I → ∞ for

w0 = θ(A) − M(A)
M(A) and w1 = N1(A) − M(A)

M(A) + 1 .

The weights w0 and w1 depend on A, although this dependence is not reflected in the notation.

It follows from the Delta Method that when I is large,

θ̂(A) ∼̇ Normal

θ(A),
[
p−1 − θ(A)

p N1(A)

] [w0 p θ(A) 0

0 w1 p (1 − p) N1(A)

] p−1

− θ(A)
p N1(A)


 .

The asymptotic standard error simplifies to

SE[θ̂(A)] = θ(A)

√
w0

(
1

p θ(A)

)
+ w1

(
1 − p

p N1(A)

)
.

Substituting θ̂(A) and p̂ for θ(A) and p yields a plug-in estimate of the standard error

ŜE[θ̂(A)] = N1(A) n0(A)
n1(A)

√
ŵ0

(
1

n0(A)

)
+ w1

(
1

n1(A) − 1
N1(A)

)
where

ŵ0 =

N1(A) n0(A)
n1(A) − M(A)

M(A) and w1 = N1(A) − M(A)
M(A) + 1 .

If we further assume that for subregion B ⊆ A,

n0(B) ∼ Negative Binomial
(

p θ(B), p θ(B) θ(B) − M(B)
M(B)

)
,

then by an argument analogous to Section 7.3.3, the asymptotic standard error of the subregion estimator

θ̃(B) = N1(A) n0(B)
n1(A) .

is

SE[θ̃(B)] = θ(B)

√
v0

(
1

p θ(B)

)
+ w1

(
1 − p

p N1(A)

)
.

Substituting θ̃(B) and p̂ for θ(B) and p yields a plug-in estimate of the standard error

S̃E[θ̃(B)] = N1(A) n0(B)
n1(A)

√
v̂0

(
1

n0(B)

)
+ w1

(
1

n1(A) − 1
N1(A)

)
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where

v0 = θ(B) − M(B)
M(B) and v̂0 =

N1(A) n0(B)
n1(A) − M(B)

M(B) .

The asymptotic standard error for the estimated subregion total τ̃(B) = θ̃(B) + Ñ1(B) is

SE[τ̃(B)] = θ(B)

√√√√v0

(
1

p θ(B)

)
+
(

v1 N1(B) (N1(A\B) − θ(B))2 + v2 N1(A\B) (N1(B) + θ(B))2

N1(A) θ(B)2

)(
1 − p

p N1(A)

)
where

v1 = N1(B) − M(B)
M(B) + 1 and v2 = N1(A\B) − M(A\B)

M(A\B) + 1

Substituting θ̃(B), p̂, Ñ1(B), and Ñ1(A\B) for θ(B), p, N1(B), and N1(A\B) yields a plug-in estimate of
the standard error

S̃E[θ̃(B)] = N1(A) n0(B)
n1(A)

√
v̂0

(
1

n0(B)

)
+ v̂

(
1

n1(A) − 1
N1(A)

)
where

v̂ = v̂1 n1(B) (n1(A\B) − n0(B))2 + v̂2 n1(A\B) (n1(B) + n0(B))2

n1(A) n0(B)2 ,

v̂1 =

N1(A) n1(B)
n1(A) − M(B)

M(B) + 1 and v̂2 =

N1(A) n1(A\B)
n1(A) − M(A\B)

M(A\B) + 1 .
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