Observations on the Bills of Mortality: The first statistical analysis

Unit 1 Lecture 2

Jonathan Auerbach
STAT 489 Pre-Cap Prof Development
jauerba@gmu.edu

September 14, 2021

Learning Objectives

After this lecture, you will be able to:

1. Describe the statistical analysis conducted by John Graunt.
2. Calculate period life expectancy at birth from a life table.
3. Explain in what sense life expectancy is a fair representation of a population's longevity.
4. Graph a simple tree diagram using ggtree. See Appendix for R code.

These slides use the following R packages

Setup:
library("tidyverse")
library("treeio")
library("ggtree")
library("knitr")
theme_set (theme_bw())

The package ggtree is not available on the Comprehensive R Archive Network (CRAN). Install it from Bioconductor:
install.packages("BiocManager")
BiocManager: install("ggtree")

Observations on the Bills of Mortality

- The bills reported the number of burials (deaths) in London.
\triangleright Sporadic publication started in the sixteenth century. Weekly publication began in 1603-Londoners could subscribe for a fee.
\triangleright Bills counted deaths by cause, e.g. plague, measles, and old age.
\triangleright Londoners used the bills as a plague warning system: to identify outbreaks and determine when to leave or return to the city.
- Graunt's Observations on the Bills of Mortality (1662) was the first publication to analyze the bills statistically and answer the most pressing demographic questions of the time.
\triangleright Among the 106 observations listed in the book's index, he found London's population was lower than previously estimated, and the population lost after a plague outbreak rebounded faster.
- To answer these questions, Graunt calculated several new statistics.
\triangleright The most famous and our focus: (period) life expectancy at birth.
\triangleright More importantly, Graunt's analysis demonstrated the value of statistics. Cities raced to collect more data, initiating the field.

Bill of Mortality (Company of Parish Clerks, 1665)

[^0]Source: https://commons.wikimedia.org/wiki/File:Bill_of_Mortality.jpg

John Graunt (1623-1687) and Observations (1662)

Source: https://en.wikipedia.org/wiki/John_Graunt\#/media/File:JohnGraunt.png
http://resource.nlm.nih.gov/2356017R

How did Graunt calculate life expectancy at birth?

- He constructed a life table: the proportion of deaths at each age.
\triangleright Today the proportion is interpreted as the probability a person randomly chosen at birth will die at that age.
- He grouped ages into stages (0-6, 7-16, 17-26, ..., 67-76, 76-79, 80)
- Denote the proportion $p_{n}=\mathbb{P}$ ("die in stage n ")
\triangleright Life expectancy at birth is average stage/age attained: $\sum_{n} n p_{n}$
- The challenge was that the bills did not record age at death.
\triangleright Graunt only observed the number of deaths from each cause-as well as other records like the number of christenings and weddings.
\triangleright By comparing christenings with causes primarily affecting children, he calculated the death rate among the 0-6 age group to be $9 / 25$.
- Graunt then assumed the death rate was the same at every stage.
\triangleright This is equivalent to modeling survival as a multistage coin-flipping experiment. One survives to stage n by flipping tails " n " times.
\triangleright Coin weight $p=\mathbb{P}$ ("die in stage $\mathrm{n} " \mid$ "alive in stage $\mathrm{n}-1$ " $) \approx 9 / 25$
\triangleright We will see in a moment that $p_{n}=(1-p)^{n-1} p$.

Graunt's life table in Observations (1662)

Graunt's life table (per hundred births)

```
life_table <-
    tibble(Age =c( 0, 6,16,26,36,46,56,66,76,80),
    Deaths =c( 0,36,24,15, 9, 6, 4, 3, 2, 1),
    Survivors = c(100,64,40,25,16,10, 6, 3, 1, 0))
kable(life_table)
```

Age	Deaths	Survivors
0	0	100
6	36	64
16	24	40
26	15	25
36	9	16
46	6	10
56	4	6
66	3	3
76	2	1
80	1	0

$\mathbb{P}($ "die in stage $\mathbf{n "} \mid$ "alive in stage $\mathbf{n}-\mathbf{1} ") \approx 9 / 25$

```
life_table %>%
mutate(`Stage` = replace(row_number() - 2, 1, NA),
    `Deaths (approx)` = 100 * (1-9/25)^Stage * 9/25,
    `Deaths (approx)` = 100 * dgeom(Stage, 9/25)) %>%
    kable(digits = 1)
```

Age	Deaths	Survivors	Stage	Deaths (approx)
0	0	100	NA	NA
6	36	64	0	36.0
16	24	40	1	23.0
26	15	25	2	14.7
36	9	16	3	9.4
46	6	10	4	6.0
56	4	6	5	3.9
66	3	3	6	2.5
76	2	1	7	1.6
80	1	0	8	1.0

Step 1: Enumerate all possible outcomes

Step 2: Label the probability of outcomes by stage

Step 3: Multiply vertical probabilities

Step 4: Add probability-weighted outcomes

$\mathbb{E}[w]=\sum_{n} w_{n} p_{n} \approx 18$

Life expectancy at birth using Graunt's table

```
life_table %>%
    mutate(`Mid Period Age` = Age - c(0, diff(Age))/2) %>%
    slice_head(n = 3) %>% kable()
```

Age	Deaths	Survivors	Mid Period Age
0	0	100	0
6	36	64	3
16	24	40	11

```
life_table %>%
    mutate(`Mid Period Age` = Age - c(0, diff(Age))/2) %>%
    summarize(`Life Expectancy from Birth` =
        sum(`Mid Period Age` * `Deaths`) / 100) %>% kable()
```

 Life Expectancy from Birth
 18.19

Life expectancy from age 6 is an interrupted game

$\mathbb{E}[w]=\sum_{n} w_{n} p_{n} \approx 27$

Graunt's life table if starting from age 6

\begin{tabular}{|c|c|c|c|c|}

\hline \& \begin{tabular}{l}
table \% ate(`Mi

- De

le(digi

 \&

$>\%$

d Period

aths Star

eplace(10

ts = 1)

 \&

$$
\text { lge }{ }^{-}=\text {Age }-c(
$$

ing from Age 6

* Deaths/Surv

\end{tabular} \& \[

$$
\begin{aligned}
& 0, \operatorname{diff}(\text { Age }) / 2, \\
& = \\
& \text { ivors }[2], 2,0)) \%>\%
\end{aligned}
$$
\]

\hline Age \& Deaths \& Survivors \& Mid Period Age \& Deaths Starting from Age 6

\hline 0 \& 0 \& 100 \& 0 \& 0.0

\hline 6 \& 36 \& 64 \& 3 \& 0.0

\hline 16 \& 24 \& 40 \& 11 \& 37.5

\hline 26 \& 15 \& 25 \& 21 \& 23.4

\hline 36 \& 9 \& 16 \& 31 \& 14.1

\hline 46 \& 6 \& 10 \& 41 \& 9.4

\hline 56 \& 4 \& 6 \& 51 \& 6.2

\hline 66 \& 3 \& 3 \& 61 \& 4.7

\hline 76 \& 2 \& 1 \& 71 \& 3.1

\hline 80 \& 1 \& 0 \& 78 \& 1.6

\hline
\end{tabular}

Graunt's methods immediately and widely adopted.

- His analyses were revolutionary and brought him instant fame.
\triangleright Graunt held a number of political offices before publication-already a great achievement given his modest background.
\triangleright But upon completing Observations, he was admitted into the Royal Society, the new and elite academic circle of the day.
- Much of his legacy due to his careful assessment of data quality.
\triangleright For example, Graunt thought deaths were systematically misclassified. Plague deaths by as much as 25% during outbreaks.
- Data collectors were likely bribed to misclassify plague deaths to avoid quarantine policies.
- Families may also have bribed them to misclassify embarrassing diseases like syphilis.
- Today, (period) life expectancy at birth is the most common measure of population health.
\triangleright World life expectancy has doubled over the past century, although substantial inequality exists among countries.

Life expectancy (1770-2019, Our World in Data)

References

1. Hacking, lan. The emergence of probability: A philosophical study of early ideas about probability, induction and statistical inference. Cambridge University Press, 2006.
2. Hald, Anders. A history of probability and statistics and their applications before 1750. John Wiley \& Sons, 2005.
3. Roser, Max, Esteban Ortiz-Ospina, and Hannah Ritchie. Life expectancy. Our World in Data. 2021.
4. Sutherland, lan. John Graunt: a tercentenary tribute. Journal of the Royal Statistical Society. 1963.

Appendix: Newick Representation of Decision Tree

\# Tree coded using Newick format
\#\# parens. denote grouping of terminal nodes
\#\# c.f. https://en.wikipedia.org/wiki/Newick_format
tree_text <- "(b:1.5, (c:1.5,(d:1.5, e:5)))a;"
tree_data <- treeio: :read.newick(text = tree_text)
tree_data\$edge.length[c(2, 4, 6)] <- 2
tree_labels <- tibble(label = letters[1:5],
outcome = paste0("Age~", seq $(-4,36,10)$),
probability $=$ paste0(paste0("p[",0:4), "] == ", paste0("(16/25) ^\{",-1:3,"\}", c(rep("~9/25", 4), ""))))
ggtree(tree_data) + layout_dendrogram()

Appendix: Graph a lightly annotated tree

```
(decision_tree_unlabeled <-
ggtree(tree_data) %<+% tree_labels +
    theme(plot.margin = unit(c(0,0,10,10), "mm")) +
    layout_dendrogram() + annotate("label",
        x = -sort(rep(seq(1, 5, 2), 2), decreasing = TRUE)-.5,
        y = c(1, 2.75, 2, 3.5, 3, 4),
        label = c(rep(c("Die", "Live"), 2), "Die", "Die")))
```

$\stackrel{\text { Die }}{7}$

Appendix: Graph an annotated tree

[^0]:

