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Learning Objectives

After this lecture, you will be able to:

1. Describe the St. Petersburg Paradox and understand the solution
proposed by Bernoulli.

2. Calculate the expected value or expected utility with a tree diagram.

3. Explain in what sense the expected value fails to fairly represent the
outcome of an experiment.

4. Graph a recursive tree diagram using ggtree. See Appendix for R
code.



These slides use the following R packages

Setup:
library("tidyverse")
library("treeio")
library("ggtree")
theme_set(theme_bw())

The package ggtree is not available on the Comprehensive R Archive
Network (CRAN). Install it from Bioconductor:
library("BiocManager")
BiocManager::install("ggtree")



The St. Petersburg Paradox
▶ Bernoulli considered the following game:

▷ The casino repeatedly flips a “fair” coin until it lands on heads.
▷ The casino then pays the player $2𝑛, where 𝑛 is the number of times

the coin was flipped.
▷ What is a fair price for this game? i.e. How much money should a

player be willing to pay to play it?

▶ The paradox is that the expected winnings are infinite—the average
amount won has no upper limit—but no reasonable person would
pay even $100 to play, let alone their entire wealth.
▷ Bernoulli (1738) worked on the paradox in his paper Exposition of a

new theory on the measurement of risk.
▷ His solution introduced the idea of utility: A gambler does not bet

based on expected winnings but rather expected utility. As wealth
increases, more money does not yield as much utility.

▶ Expected utility—and equivalent formulations expected loss and
expected regret—have become the standard framework for making
decisions under uncertainty.



Daniel Bernoulli (1750) and Exposition (1738)

Source: https://en.wikipedia.org/wiki/Daniel_Bernoulli#/media/File:ETH-BIB-Bernoulli,_Daniel_(1700-1782)-Portrait-
Portr_10971.tif_(cropped).jpg
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Bernoulli: most famous family of mathematicians
▶ Three generations of one family generated an incredible amount of

knowledge during the 17th and 18th century.
▶ Relevant for this lecture: Jacob Bernoulli developed and popularized

expected value (1713 posthumously, following Pascal and Fermat).
Nicolaus I Bernoulli stated the paradox (1713). Daniel Bernoulli
invented utility to resolve it (1738, following Gabriel Cramer).
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Why was the St. Petersburg Paradox so important?

▶ Jacob Bernoulli discovered the Law of Large Numbers (posth. 1713)
▷ He showed that in large samples, sample frequencies are close to their

expectations with high probability. i.e. Given enough experience, one
can learn the “degree of certainty” with which future events occur.

▷ Many assumed knowing the expected outcome was sufficient for
decision making—that it always supported reasonable conclusions.

▶ Nicholas Bernoulli presented paradox to Pierre de Montmort (1713).
▷ It was controversial because it suggested that the expected outcome

is not always a reasonable basis for decision making.

▶ Daniel Bernoulli published his resolution in the annals of the
Academy of St. Petersburg (1738, hence “St. Petersburg Paradox”).
▷ He argued a “fair” price should take into account the diminishing

value of money—that money increases utility at a decreasing rate.
▷ In this lecture, we use tree diagrams to demonstrate the paradox and

D. Bernoulli’s resolution.



Step 1: Enumerate all possible outcomes
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Step 1: Enumerate all possible outcomes
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H T

H T

H T

H T

Flip n

Flip 3

Flip 2

Flip 1

w1 = 21

w2 = 22

w3 = 23

wn = 2n

Let 𝑤 = “winnings” and 𝑤𝑛 = “winnings if game ends on flip n”



Step 2: Label the probability of outcomes by stage
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w1 = 21
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Let 𝑤 = “winnings” and 𝑤𝑛 = “winnings if game ends on flip n”



Step 3: Multiply vertical probabilities
Start
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Flip n

Flip 3

Flip 2

Flip 1

w1 = 21

w2 = 22

w3 = 23

wn = 2n

p =  1/2 1 − p =  1/2     
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pn = 2−n

Let 𝑤 = “winnings” and 𝑤𝑛 = “winnings if game ends on flip n”

𝑝𝑛 = ℙ(“game ends on flip n”) = (1 − 𝑝)𝑛−1𝑝 = 2−𝑛



Step 4: Add probability-weighted outcomes
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Flip n
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Flip 1

w1 = 21

w2 = 22

w3 = 23
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p =  1/2 1 − p =  1/2     
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p =  1/2 1 − p =  1/2     

p1 = 2−1

p2 = 2−2

p3 = 2−3

pn = 2−n

Let 𝑤 = “winnings” and 𝑤𝑛 = “winnings if game ends on flip n”

𝑝𝑛 = ℙ(“game ends on flip n”) = (1 − 𝑝)𝑛−1𝑝 = 2−𝑛

𝔼[𝑤] = ∑∞
𝑛=1 𝑤𝑛𝑝𝑛 = ∑∞

𝑛=1 2𝑛2−𝑛 = ∑∞
𝑛=1 1 = ∞



Bernoulli’s resolution relies on expected “utility”
▶ He thought it unrealistic that players value all winnings equally.

▷ In practice, the first million is more valuable than the second million.
(Even though two million dollars is more valuable than one million.)

▷ But all winnings have same weight in an expected value calculation.

▶ Let utility, 𝑢(𝑤), denote the value derived from winning 𝑤.
▷ Bernoulli believed the increase in utility of the winnings should be

inversely proportional to total wealth.

▷ This implies utility should be a logarithmic function of winnings:

▶ Suppose 𝑑𝑢
𝑑𝑤 = 𝑐1

𝑤 + 𝑐2
, where 𝑤 is the amount won, 𝑐1 is the

relative (marginal) value of wealth, and 𝑐2 is the player’s wealth
before playing.

▶ Integrating yields 𝑢(𝑤) = 𝑐0 + 𝑐1 log𝑒(𝑤 + 𝑐2).

▶ To make calculations in this lecture easier, we assume that
𝑐0 = 𝑐2 = 0 and 𝑐1 = log2(𝑒). In this case, 𝑢(𝑤) = log2(𝑤).



Exposition (1738, reprinted Econometrica 1954)



The game is worth only $4 if 𝑢 = log2(𝑤)
Start

H T

H T

H T
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Flip n

Flip 3

Flip 2

Flip 1

u1 = log2 21 = 1

u2 = log2 22 = 2

u3 = log2 23 = 3

un = log2 2n = n

p =  1/2 1 − p =  1/2     

p =  1/2 1 − p =  1/2     

p =  1/2 1 − p =  1/2     

p =  1/2 1 − p =  1/2     

p1 = 2−1

p2 = 2−2

p3 = 2−3

pn = 2−n

Let 𝑢 = log2(“winnings”) and 𝑢𝑛 = log2(“winnings if game ends on flip n”)

𝑝𝑛 = ℙ(“game ends on flip n”) = (1 − 𝑝)𝑛−1𝑝 = 2−𝑛

𝔼[𝑢] = ∑∞
𝑛=1 𝑢𝑛 𝑝𝑛 = ∑∞

𝑛=1 log2(2𝑛) 2−𝑛 = ∑∞
𝑛=1 𝑛 2−𝑛 = 2

n.b. ∑∞
𝑛=1 𝑛 𝑝𝑛 = 𝑝

(1−𝑝)2 for 0 ≤ 𝑝 < 1 n.b. 2 “utils” = $4



Bernoulli’s utility is the first of many resolutions

▶ The St. Petersburg Paradox works by placing very large weight on
very rare outcomes—outcomes that cannot happen in practice.
▷ Bernoulli’s resolution reduces the relative weight of those outcomes.
▷ However, the log transformation does not solve the problem of

infinite expectations in general.
▶ In fact, the game can be adjusted to produce infinite expectations by

simply increasing the payout. (e.g. set 𝑤𝑛 = 22𝑛 )

▶ Scientists continue to write about the paradox. Other resolutions:
▷ Poisson: Arbitrarily large payouts are unrealistic; the world has finite

wealth. If payouts are capped, the expected winnings are small.
▶ e.g. Suppose a casino only has $100 million. Then the game must

stop before round 27 since 227 > 100,000,000
▶ If game must stop before round 27, the expected winnings are $27.

▷ Condorcet: Expected winnings do not tell you the value of any one
bet, only the value of repeating a bet many times.

▶ If the game is repeated a large enough number of times, the average
winnings across all plays will exceed any predetermined price.



How much would a real player pay to play?

▶ We cannot know for sure. The game cannot be played in practice.
▷ But when Cox et al. (2011) offered a finite version of the

St. Petersburg game—i.e. when players were offered the opportunity
to pay $8.75 to play for a maximum of 9 rounds—83% declined.

▶ n.b. There is less than a 0.5 percent chance of getting to round 9.

▷ Since the expected winnings of this game are $9, this suggests most
players do not base their decisions on the expected value.

▷ Most players are risk averse. i.e. Even though they would make
money on average, they do not want to risk the money they have.

▶ More important than resolving the St. Petersburg Paradox,
Bernoulli’s insight helped changed our interpretation of data.
▷ Decision theory, regression models, and many other statistical tools

work by maximizing utility (or an approach similar to maximizing
utility like minimizing loss or regret).



References
1. Bernoulli, Daniel. “Exposition of a new theory on the measurement.”

Econometrica 22.1 (1954): 23-36.

2. Cox, James C., Vjollca Sadiraj, and Bodo Vogt. “On the empirical
relevance of St. Petersburg lotteries.” Petersburg Lotteries (January
1, 2011). Andrew Young School of Policy Studies Research Paper
Series 11-04 (2011).

3. Diaconis, Persi, and Brian Skyrms. “Ten great ideas about chance.”
Ten Great Ideas about Chance. Princeton University Press, 2017.

4. Gigerenzer, Gerd, Zerno Swijtnik, Theodore Porter, Lorraine Daston,
John Beatty, and Lorenz Kruger. “The empire of chance: How
probability changed science and everyday life.” Cambridge University
Press, 1990.

5. Hacking, Ian. The emergence of probability: A philosophical study
of early ideas about probability, induction and statistical inference.
Cambridge University Press, 2006.



Appendix: Newick Representation of Decision Tree
# Tree coded using Newick format
## parens. denote grouping of terminal nodes
## c.f. https://en.wikipedia.org/wiki/Newick_format

tree_text <- "(b:1.5,(c:1.5,(d:1.5,(e:1.5, f:5))))a;"
tree_data <- treeio::read.newick(text = tree_text)
tree_data$edge.length[c(2, 4, 6)] <- c(2, 2, 3)
tree_labels <- tibble(label = letters[1:6],

label_text = c(paste0("2^",0:3),"2^n",""))

ggtree(tree_data) %<+% tree_labels + layout_dendrogram() +
geom_tiplab(geom = "text", aes(label = label_text),

parse = T, vjust = 1, hjust = .5, angle = 1)

21

22

23

2n



Appendix: Graph a lightly annotated tree
(decision_tree_unlabeled <-

ggtree(tree_data) %<+% tree_labels +
layout_dendrogram() +
annotate("text", x = -12.25, y = 2, label = "Start") +
annotate("label", label = rep(c("H", "T"), 4),

x = -c(11.5, 11.5, 9.5, 9.5, 7.5, 7.5, 4.5, 4.5),
y = c(1, 2.875, 2, 3.75, 3, 4.5, 4, 5)) +

xlim(0, -12.25) +
geom_tiplab(geom = "text", aes(label = label_text),

parse = T, vjust = 1, hjust = .5,
angle = 1) +

geom_linerange(y = 5, xmin = -1, xmax = 2.75,
color = "white", size = 2) +

geom_linerange(y = 4.5, xmin = 5.02, xmax = 5.75,
color = "white", size = 2) +

geom_linerange(y = 5, xmin = -1, xmax = 2.75,
linetype = "dotted",
size = .75) +

geom_linerange(y = 4.5, xmin = 5.02, xmax = 5.75,
linetype = "dotted", size = .75))



Appendix: Graph an annotated tree

(decision_tree_labeled <-
decision_tree_unlabeled +
annotate("text", y = 0,

x = -(c(5, 8, 10, 12)) -.2,
label = paste("Flip", c("n", 3:1))) +

geom_vline(xintercept = -(c(5, 8, 10, 12)),
linetype = 2) +

annotate("text",
x = -c(11.5, 11.5, 9.5, 9.5,

7.5, 7.5, 4.5, 4.5) + .5,
y = c(1, 2.875, 2, 3.75, 3, 4.5, 4, 5),
label = rep(c("p = 1/2",

"1 - p = 1/2 "), 4))) +
geom_linerange(y = 0, xmin = 6.5, xmax = 7,

linetype = "dotted", size = .75) +
geom_linerange(y = 0, xmin = 3.5, xmax = 4,

linetype = "dotted", size = .75)


