Are male births more likely than female births? The first p-value.
 Unit 3 Lecture 1

Jonathan Auerbach
STAT 490 Pre-Cap Prof Development
jauerba@gmu.edu

October 14, 2021

How do scientists determine whether data support a theory?

These slides use the following R packages

Setup:
library("knitr")
library("HistData")
library("tidyverse")
theme_set(theme_bw())

Are male births more likely than female births?

- Arbuthnot (1710) retrieved 82 years of London christenings (1629-1710)
- The number of boys exceeded the number of girls every year
- Arbuthnot reasoned: were birth rates equal, the probability of more boys each year $=$ probability a fair coin lands on heads 82 times in a row
- This probability (the p-value) is essentially zero

John Arbuthnot (1722)

An argument for divine providence (1710)

II. An Argument for Divine Providence, taken from the conflant Regularity obferv'd in the Births of both Sexes. By Dr. John Arbuthnott, Phyfitian in Ordinary to Her Majefty, and Fellow of the College of Phyjitians and the Royal Society.

A
Mong innumerable Foorfteps of Divine Providence to be found in the Works of Nature, there is a very remarkable one to be obferved in the exact Ballance that is maintained, between the Numbers of Men and Women; for by this means it is provided, that the Species may never fail, nor perifh, fince every Male mav have its Female, and of a proportionable Age. This Equality of Males and Females is not the Effect of Chance but Divine Providence, working for a good End, which I thus demonfrate :
Let there be a Die of Two fides, M and \mathbf{F}, (which denote Crofs and Pile), now to find all the Chances of any determinate Number of fuch Dice, let the Binome M +F be raifed to the Power, whofe Exponent is the Number of Dice given; the Cocficients of the Terms will fhew all the Chances fought. For Example, in Two Dice of Two fides $\mathrm{M}+\mathrm{F}$ the Chances are $\mathrm{M}^{2}+2 \mathrm{MF}+\mathrm{F}^{2}$, that is, One Chance for M double, One for F double, and Two for M fingle and F fingle; in Four fuch Dice there are Chances $\mathrm{M}^{4}+4 \mathrm{M}^{3} \mathrm{~F}+6 \mathrm{M}^{2} \mathrm{~F}^{2}+4 \mathrm{MF}^{3}+\mathrm{F}^{4}$, that is, One Chance for M quadruple, One for F quadruple, Four for triple M and fingle F, Four for fingle M and triple F, and Six for M double and F double; and univerally, if the Number of Dice be n, all their Chances will be expreffed in this Series

(189)

lefs thari any affignable Fration. from whence it follows, that it is Art, not Chance, that governs.
There feems no more probable Caufe to be afligned in Phyticks for this Equality of the Births, than that in our firf Parents Seed there were at firtt formed an equal Number of both Sexes.
Scholinm. From hence it follows, that Polygamy is contrary to the Law of Nature and Juftice, and to the Propagation of Human Race; for where Males and and Females are in equal number, if one Man takes Twenty Wives, Nincteen Men muft live in Celibacy, which is repugnant to the Defign of Nature ; nor is it probable that Twenty Women will be fo well impregnated by one Mari as by Twenty.

Arbuthnot's Data

```
Arbuthnot %>%
    select(Year, Males, Females) %>%
    filter(Year < 1634 | Year > 1707) %>%
    kable()
```

Year	Males	Females
1629	5218	4683
1630	4858	4457
1631	4422	4102
1632	4994	4590
1633	5158	4839
1708	8239	7623
1709	7840	7380
1710	7640	7288

Sign Test

```
Arbuthnot \%>\%
mutate (Heads = ifelse(Males - Females > 0, 1, 0)) \%>\%
summarize(Num_Heads \(=\) sum(Heads),
    Num_Trials \(=\mathrm{n}()) \%>\%\)
transmute (
    'p value` =
        binom.test( \(\mathrm{x}=\) Num_Heads,
        \(\mathrm{n}=\) Num_Trials,
        \(p=.5\),
        alternative = "greater")\$p.value) \%>\%
kable(digits = Inf)
```

$\frac{p \text { value }}{2.067952 \mathrm{e}-25}$

This is the same as $\frac{1}{2^{82}}=2.0679515 \times 10^{-25}$.

Simulations of Sign Test under Null Hypothesis

```
ggplot(tibble(sims = rbinom(1e4, 82, .5))) +
geom_histogram(aes(x = sims)) +
geom_vline(xintercept = 82,
    color = "blue", linetype = 2) +
labs(x = "Number of Years with More Male Births")
```


Why are male births more likely than female births?

- Arbuthnot thought the difference was due to a wise creator carefully adjusting for the risk men face hunting.
- This theory is not supported by the data. Arbuthnot proved the difference in the birth rates is not zero. He did not prove it is consistent with the risk men face hunting.
- To support his theory, Arbuthnot might have determined the risk men face hunting, and then tested whether this rate is consistent with the excess of male over female births.

Why are male births more likely than female births?

- Recent research suggests the birth ratio is balanced at conception (Figure from Orzack et al (2015))
- Female embryos more likely to be lost during pregnancy

References

1. Arbuthnot, John. "An Argument for Divine Providence." Philosophical Transactions 27 (1710): 186-190.
2. Friendly, Michael. "HistData: Data sets from the history of statistics and data visualization." R package version 0.7-5 (2014).
3. Orzack, Steven Hecht, et al. "The human sex ratio from conception to birth." Proceedings of the National Academy of Sciences (2015): 201416546.
4. Stigler, Stephen. "The seven pillars of statistical wisdom." Harvard University Press, 2016.
