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Learning Objectives

After this lecture, you will be able to:

1. Define the ratio estimator and describe how Laplace used it to
estimate the population of France from the number of births.

2. Use the ggrepel package to visualize which administrative regions if
any have atypical birth rates.

3. Derive the asymptotic variance of the ratio estimator by modeling
the relationship between the population and the number of births.

4. Derive the asymptotic variance of the ratio estimator by modeling
how Laplace selected his sample.



These slides use the following R packages

Setup:
library("readxl")
library("knitr")
library("tidyverse")
library("ggplot2")
library("ggrepel")
theme_set(theme_bw(base_size = 20))



Ratio estimation: The first sample survey analysis

▶ Laplace wanted to estimate the total population of France in 1802.
▷ But he was only able to sample the population in a handful of

administrative regions.

▶ Laplace used the number of births—known at all locations from
government records—to estimate the total population in three steps:

1. He first assumed the ratio of births to population (i.e. the birth rate)
was the same for all locations.

2. He then estimated this ratio using data from 30 regions in which
both the number of births and the population were sampled.

3. Finally, he divided the total number of births in France by the ratio,
yielding the estimated total population of France.

▶ These steps as often referred to as “ratio estimation,” and the
estimated population as the “ratio estimator.”



Ratio estimation: The first sample survey analysis

▶ Laplace studied ratio estimation over a thirty-year period.
▷ Laplace first examined the accuracy of ratio estimation in On births,

marriages, and deaths in Paris from 1771 to 1784 (1783).

▷ He published the results of the 1802 population estimate in Analytic
Theory of Probabilities (1812, Book 2 Chapter 6 Section 31).

▷ Finally, Laplace further discussed the estimate in A Philosophical
Essay on Probabilities (1814, Chapter 8).

▶ Laplace was not the first to estimate a population using ratios.
▷ Graunt (1654) used church records to estimate the total population

of London more than a hundred years earlier.

▷ But Laplace was the first to derive the asymptotic distribution of the
ratio estimator, characterizing its accuracy relative to the unobserved
total population.

▶ Today, ratio estimation is commonly used to analyze survey data.



Pierre-Simon Laplace, Analytic Theory (1812)

Source: https://www.newworldencyclopedia.org/entry/Pierre-Simon_Laplace
https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018

https://www.newworldencyclopedia.org/entry/Pierre-Simon_Laplace
https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018


Laplace first to formally study ratio estimation
▶ Let 𝑌 denote the total population of France in 1802 and 𝑋 the total

number of births.
▷ Laplace wanted to estimate 𝑌 from 𝑋.

▷ Graunt had previously observed that 𝑌 could be determined by
multiplying 𝑋 by 𝛽, the population per birth—or equivalently, divide
by 𝑝 = 1/𝛽, the number of births per person.

▶ Laplace estimated 𝛽 and 𝑝 using a somewhat systematic sample of
regions. Let 𝑦 denote the population in Laplace’s sample regions
and 𝑥 the corresponding number of births.
▷ Laplace calculated the ratio estimator ̂𝑌 = 𝑦

𝑥 𝑋 = ̂𝛽𝑋 = 𝑋/ ̂𝑝.

▶ n.b. the ratio estimator is also obtained if the sample ratio is used to
estimate the population not sampled, 𝑋 − 𝑥. i.e.

̃𝑌 ∶= 𝑦 + 𝑦
𝑥(𝑋 − 𝑥) = 𝑦 + 𝑦

𝑥𝑋 − 𝑦
𝑥𝑥 = 𝑦

𝑥𝑋 = ̂𝑌



Laplace sampled the population in 30 regions and
calculated number of births in the preceding 3 years

sample_fr <- tibble( # data from Bru (1988)
region = c("Alpes basses", "Ardennes", "Aube",

"Bouches-du-Rhone", "Charente", "Doubs", "Dyle", "Gard",
"Herault", "Ille et Villaine","Jura", "Liamone",
"Loire inferieure", "Lozere", "Meuse",
"Meuse inferieure", "Mont Blanc", "Mont Tonnerre",
"Nord", "Puy-de-Dome", "Rhin bas", "Sarre", "Seine",
"Seine inferieure", "Seine-et-Oise", "Sesia",
"Deux-Sevres", "Stura", "Var", "Vienne"),

population = c(51678, 50900, 51717, 49996, 58229, 50170,
109568, 65526, 107227, 106157, 58514, 14509, 97778,
50867, 72419, 45998, 50056, 50507, 51796, 48265, 49999,
55002, 52585, 135497, 55334, 209510, 49993, 86315,
49957, 51546),

births = c(6094, 5210, 6071, 5471, 5961, 5393, 12010,
7352, 12247, 12246, 5780, 1422, 9644, 4075, 7772, 3927,
5215, 6070, 5876, 5050, 5758, 6174, 5499, 13584, 4846,
22382, 5058, 9446, 5325, 4641) / 3)



Laplace sampled the population in 30 regions and
calculated number of births in the preceding 3 years

sample_fr %>%
head(10) %>%
kable(digits = 2, format.args = list(big.mark = ","))

region population births
Alpes basses 51,678 2,031.33
Ardennes 50,900 1,736.67
Aube 51,717 2,023.67
Bouches-du-Rhone 49,996 1,823.67
Charente 58,229 1,987.00
Doubs 50,170 1,797.67
Dyle 109,568 4,003.33
Gard 65,526 2,450.67
Herault 107,227 4,082.33
Ille et Villaine 106,157 4,082.00



Nearly all regions had 28.352845 people per birth
sample_fr %>% ggplot(aes(population/1000, births/1000)) +
geom_smooth(method = "lm", formula = y ~ x + 0,

aes(weight = 1000/births)) +
geom_point() + geom_text_repel(aes(label = region)) +
labs(x = "population (thousands)",

y = "births (thousands)")
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Laplace concluded France had 28,352,845 people
▶ Laplace assumed there were one million births in France in 1802.

▷ Multiplying one million by the sample number of people per birth
produced an estimated total population of 28,352,845 people.

sample_total_fr <-
sample_fr %>%
summarize(x = sum(births),

y = sum(population),
y/x,
X = 1e6,
`X(y/x)` = X * y / x)

sample_total_fr %>%
kable(digits = 2, format.args = list(big.mark = ","))

x y y/x X X(y/x)
71,866.33 2,037,615 28.35 1e+06 28,352,845



How accurate is the ratio estimator?
▶ Laplace initially assumed 𝑥 ∼ Binomial(𝑝, 𝑦). He then derived the

asymptotic (posterior) distribution of 𝑋/ ̂𝑝 = 𝑦
𝑥𝑋.

▷ Cochran (1978) presents a similar but modern argument. Observe
that √𝑦( ̂𝑝 − 𝑝) → 𝒩(0, 𝑝(1 − 𝑝))

▶ To determine the distribution of 𝑋/ ̂𝑝, recall the Delta Method:

if
√𝑛( ̂𝜇𝑛−𝜇) → 𝒩(0, 𝜎2), then

√𝑛 (𝑓( ̂𝜇𝑛) − 𝑓(𝜇)) → 𝒩(0, 𝑓 ′(𝜇)2𝜎2)

▷ Substituting 𝑦 for 𝑛 and 𝑝 for 𝜇; setting 𝑓( ̂𝑝) = 𝑋/ ̂𝑝 and
𝑓(𝑝) = 𝑋/𝑝; and noting 𝑓 ′(𝑝)2 = 𝑋2/𝑝4, it follows that

𝑋/ ̂𝑝 ∼̇ 𝒩(𝑋/𝑝, 𝑝(1 − 𝑝)
𝑦𝑝4 𝑋2)

▶ The variance can be approximated by substituting ̂𝑝 for 𝑝,

Var(𝑋/ ̂𝑝) ≈
𝑥
𝑦 (1 − 𝑥

𝑦 )
𝑦(𝑥

𝑦 )4 𝑋2 = (𝑦 − 𝑥)𝑦
𝑥3 𝑋2



How accurate is the ratio estimator?
sample_total_fr %>%
transmute(Y_hat = y / x * X,

se = sqrt((y - x) * y / x^3 * X^2),
lower = Y_hat - 2 * se,
upper = Y_hat + 2 * se) %>%

rename(`$\\hat \\text Y$` = Y_hat) %>%
kable(digits = 2, format.args = list(big.mark = ","))

Ŷ se lower upper
28,352,845 103,881.2 28,145,083 28,560,607

▶ Laplace assumed sample population 𝑦 was measured without error,
and number of births 𝑥 varied due to binomial sampling variation.
▷ Since 𝑦 is large, the ratio estimator is found to be very accurate.

▷ But was the population measured with error? Does the birth rate
vary, and the sample locations have unusual birth rates by chance?



The population-error model
▶ Let 𝑦𝑖 denote the population at sampled region 𝑖 and 𝑥𝑖 the number

of births. Suppose 𝑦𝑖 proportional to 𝑥𝑖 plus measurement error. i.e.

𝑦𝑖 = 𝛽𝑥𝑖 + 𝜖𝑖 where 𝜖𝑖 ∼ 𝒩(0, 𝜎2𝑥𝑖)

▷ Let 𝑦 = ∑ 𝑦𝑖 and 𝑥 = ∑ 𝑥𝑖 denote the population and births in the
sampled regions. Define estimates ̂𝛽 = 1/ ̂𝑝 = 𝑦

𝑥 and ̂𝜖𝑖 = 𝑦𝑖 − ̂𝛽𝑥𝑖.

▶ To find the distribution of ̂𝛽𝑋, note that 𝜖 = 𝑦 − 𝛽𝑥 ∼ 𝒩(0, 𝜎2𝑥).
▷ Multiplying by 𝑋/𝑥,

𝜖𝑋/𝑥 = (𝑦 − 𝛽𝑥)𝑋/𝑥 = ( ̂𝛽𝑋 − 𝛽𝑋) ∼ 𝒩(0, 𝜎2𝑋2/𝑥)

▷ It follows that ̂𝛽𝑋 ∼ 𝒩(𝛽𝑋, 𝜎2𝑋2/𝑥)

▶ We approximate 𝜎2 with sample variance of ̂𝜖𝑖/√𝑥𝑖(1 − 𝑥𝑖/𝑥) since

Var( ̂𝜖𝑖) = Var(𝑦𝑖 − ̂𝛽𝑥𝑖) = Var(𝑦𝑖 − (𝑦/𝑥)𝑥𝑖) =
= Var(𝑦𝑖) + Var(𝑦)(𝑥𝑖/𝑥)2 − 2Cov(𝑦𝑖, 𝑦)(𝑥𝑖/𝑥)
= 𝜎2𝑥𝑖 + 𝜎2𝑥(𝑥𝑖/𝑥)2 − 2𝜎2𝑥2

𝑖 /𝑥 = 𝜎2𝑥𝑖(1 − 𝑥𝑖/𝑥)



The population-error model
beta_hat <- sample_total_fr$y / sample_total_fr$x

e <-
sample_fr %>%
mutate(e = (population - beta_hat * births) /

(sqrt(births * (1 - births / sum(births))))) %>%
pull(e)

sample_total_fr %>%
transmute(Y_hat = y / x * X,

se = sd(e) * X / sqrt(x),
lower = Y_hat - 2 * se,
upper = Y_hat + 2 * se) %>%

rename(`$\\hat \\text Y$` = Y_hat) %>%
kable(digits = 2, format.args = list(big.mark = ","))

Ŷ se lower upper
28,352,845 466,905.5 27,419,034 29,286,656



The sampling design-based model
▶ Let 𝑦𝑖 denote the population at region 𝑖 = 1, … , 𝑁 (including

regions not sampled) and 𝑥𝑖 the number of births. Let 𝑧𝑖 denote if
region 𝑖 sampled (i.e. 𝑧𝑖 = 1 if region 𝑖 sampled and 𝑧𝑖 = 0 if not).

▷ Let 𝑦 = ∑𝑁
𝑖=1 𝑦𝑖𝑧𝑖 and 𝑥 = ∑𝑁

𝑖=1 𝑥𝑖𝑧𝑖 denote population and births
at sample regions and 𝑌 = ∑𝑁

𝑖=1 𝑦𝑖 and 𝑋 = ∑𝑁
𝑖=1 𝑥𝑖 at all regions.

▷ Estimate 𝛽 = 𝑌 /𝑋 with ̂𝛽 = 1/ ̂𝑝 = 𝑦
𝑥 .

▶ To determine distribution of ̂𝛽𝑋, assume 𝑧𝑖 ∼ Bernoulli(𝑞) so that
√

𝑁𝜖 =
√

𝑁(𝑦 − 𝛽𝑥) =
√

𝑁
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝛽𝑥𝑖)𝑧𝑖 → 𝒩(0, 𝑞(1 − 𝑞)𝜎2)

▷ Multiplying by 𝑋/𝑥 (and ignoring the randomness of 𝑥),
√

𝑁𝜖𝑋/𝑥 =
√

𝑁(𝑦 −𝛽𝑥)𝑋/𝑥 =
√

𝑁( ̂𝛽𝑋 −𝛽𝑥) → 𝒩(0, 𝑞(1−𝑞)𝜎2𝑋2/𝑥2)

▷ If 𝑥 ≈ 𝑋𝑞, then ̂𝛽𝑋 ∼̇ 𝒩(𝛽𝑋, 1−𝑞
𝑞 𝜎2)

▶ We approximate 𝜎2 with the sample variance of ̂𝜖𝑖 = 𝑦𝑖 − ̂𝛽𝑥𝑖.



The sampling design-based model
beta_hat <- sample_total_fr$y / sample_total_fr$x

e <- sample_fr$population - beta_hat * sample_fr$births

q <- sample_total_fr$x / sample_total_fr$X

N <- 30 / q

sample_total_fr %>%
transmute(Y_hat = y / x * X,

se = sqrt((1 - q) / q * N) * sd(e),
lower = Y_hat - 2 * se,
upper = Y_hat + 2 * se) %>%

rename(`$\\hat \\text Y$` = Y_hat) %>%
kable(digits = 2, format.args = list(big.mark = ","))

Ŷ se lower upper
28,352,845 403,708.7 27,545,427 29,160,262



Which model is the right model?

▶ The intervals derived from the population-error and design-based
models are 4x larger than the interval from the binomial model.
▷ The design-based interval assumes regions are randomly selected.

▷ In reality, Laplace picked regions evenly distributed across France.
Assistants picked subregions until roughly 50,000 people per region.

▶ The binomial model produces intervals that appear to be too narrow,
but since there was no 1802 census we cannot know for sure.
▷ One way to compare the models is to use the 1801 census, which

attempted to enumerate the entire population of France. (The 1801
census was not available when the 1802 sample was collected.)

▷ Such a comparison suggests the binomial model intervals are too
narrow while the other two intervals are appropriate. (See Appendix.)
Note that the 1801 census was thought to be inaccurate (Bru 1988).



Ratio estimation and its variants are popular today
▶ Population estimation has improved substantially since 1802.

▷ But even modern surveys have errors due to small samples or
respondants unable or unwilling to participate.

▷ Auxiliary information, such as administrative records, are still used to
adjust surveys to more accurately reflect the population.

▶ A common use of ratio estimation is in post-stratification:
▷ For each strata (group) 𝑠, the survey taker obtains sums 𝑦𝑠 and 𝑥𝑠,

denoting the outcome of interest and an auxiliary outcome for a
sample of respondants.

▷ To estimate 𝑌𝑠, the sum of the auxiliary outcome for all individuals in
the strata, 𝑋𝑠, is used to construct a ratio estimator for each strata.

▷ Summing across strata produces an estimate of 𝑌 ,

̂𝑌 =
𝑆

∑
𝑠=1

̂𝑌𝑠 =
𝑆

∑
𝑠=1

𝑋𝑠
𝑦𝑠
𝑥𝑠
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Appendix: Download data from 1801 census

url <-
"www.insee.fr/fr/statistiques/fichier/2591293/TERR_T86.xls"

download.file(url, destfile = "TERR_T86.xls")

france <-
read_xls("TERR_T86.xls", skip = 7) %>%
transmute(
region =
str_replace(`Nom de l'unité d'analyse`, "\\(", " \\("),

region = str_replace_all(region, "-\\)", "\\)"),
births =

`Naissances légitimes et naturels: total, 1800 à 1801`,
population = `Nombre d'habitants, 1801`) %>%
filter(region != "TARN-ET-GARONNE")



Appendix: Table of first 10 of 85 census regions

france %>%
head(10) %>%
kable(format.args = list(big.mark = ","))

region births population
FRANCE 903,688 27,349,003
AIN 9,703 297,071
AISNE 13,335 425,981
ALLIER 7,991 248,864
ALPES (BASSES) 5,552 133,966
ALPES (HAUTES) 4,015 112,500
ARDECHE 8,784 266,656
ARDENNES 7,911 259,925
ARIEGE 5,773 196,454
AUBE 6,823 231,455



Appendix: Visualization of 85 census regions
france %>% filter(region != "FRANCE") %>%
ggplot(aes(population/1000, births/1000)) +
geom_smooth(method = "lm", formula = y ~ x + 0,

aes(weight = 1000/births)) +
geom_point() + geom_text_repel(aes(label = region)) +
labs(x = "population (thousands)",

y = "births (thousands)")
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Appendix: Table of regions randomly sampled
set.seed(1)

france_sample <- france %>%
filter(region != "FRANCE")%>%
filter(rbinom(length(region), 1, 1/8) == 1)

france_sample %>% kable(format.args = list(big.mark = ","))

region births population
ALPES (BASSES) 5,552 133,966
ARDECHE 8,784 266,656
ARDENNES 7,911 259,925
CORREZE 8,041 243,654
COTES-DU-NORD 17,829 504,303
PUY-DE-DOME 16,530 507,128
SARTHE 12,938 388,143
SOMME 14,458 459,453
VENDEE 8,080 243,426



Appendix: Ratio estimation using sample
france_sample_total <- france_sample %>%
summarize(x = sum(births), y = sum(population))

france_sample_total %>% mutate(y/x) %>%
kable(digits = 2, format.args = list(big.mark = ","))

x y y/x
100,123 3,006,654 30.03

france_total <- france %>% filter(region == "FRANCE") %>%
select(X = births, Y = population)

france_total %>% bind_cols(france_sample_total) %>%
transmute(X, Y, Y/X, `X(y/x)` = X * y / x) %>%
kable(digits = 2, format.args = list(big.mark = ","))

X Y Y/X X(y/x)
903,688 27,349,003 30.26 27,137,392



Appendix: Comparison of accuracy estimates
beta_hat <- france_sample_total$y / france_sample_total$x
e_1 <- (france_sample$population -

beta_hat * france_sample$births)
e_2 <-

e_1 / sqrt(france_sample$births *
(1 - france_sample$births / sum(france_sample$births)))

france_sample_total %>% bind_cols(france_total) %>%
transmute(Y, Y_hat = y / x * X,
`se binomial` = sqrt((y-x)* y / x^3 * X^2),
`se pop error` = sd(e_2) * X / sqrt(x),
`se design` = sqrt((1 - 1/8) / (1/8) * 85) * sd(e_1)) %>%
rename(`$\\hat \\text Y$` = Y_hat) %>%
kable(digits = 0, format.args = list(big.mark = ","))

Y Ŷ se binomial se pop error se design
27,349,003 27,137,392 84,323 639,070 496,051


