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Learning Objectives

After this lecture, you will be able to:

1. Describe the regression phenomenon as stated by Galton.

2. Use the ggplot2 and geomtextpath packages to visually compare
the regression line and the identity line.

3. Derive the regression line from the bivariate normal distribution.

4. Derive the regression line using least squares.



These slides use the following R packages

Setup:
library("knitr")
library("HistData")
library("tidyverse")
library("geomtextpath")
theme_set(theme_bw(base_size = 20))



Why are tall parents likely to have shorter children?

▶ Francis Galton’s investigation of this question revolutionized
statistical methodology.
▷ Galton was Charles Darwin’s half cousin and greatly influenced by

Darwin’s On the Origin of Species (1859).
▷ He studied how physical characteristics were inherited, like height.

▶ In one study, Galton recorded the heights of 205 parents and their
928 adult children
▷ The heights of women were multiplied by 1.08 to account for the

fact that men are 8 percent taller than women, on average.
▷ Galton then compared the average parent height to the height of

each child.
▷ He noticed that tall parents tend to have children who are shorter

than they are.



Why are tall parents likely to have shorter children?

▶ Initially, Galton believed the children had “regressed towards
mediocrity.”
▷ Galton concluded in his 1877 article Typical Laws of Heredity that

regression was a force governing natural selection, opposing the force
that creates new species.

▶ Galton later realized that the force of regression was an illusion
(statistical artifact).
▷ It was not the children who were abnormal in their regression

towards mediocrity, but their parents who were abnormal in having
an above average height to begin with.

▷ He published his findings in his 1886 article Regression Towards
Mediocrity in Hereditary Stature.

▶ Karl Pearson, Udny Yule, and other statisticians studied the
regression phenomenon mathematically, resulting in the regression
analysis that we teach in statistics courses today.



Galton and Regression Towards Mediocrity (1886)

Source: https://en.wikipedia.org/wiki/Francis_Galton#/media/File:Sir_Francis_Galton_by_Gustav_Graef.jpg

https://en.wikipedia.org/wiki/Francis_Galton#/media/File:Sir_Francis_Galton_by_Gustav_Graef.jpg


Galton cross-classified parent and child heights…



… and visualized the relationship geometrically



Galton’s Data from the HistData package

Galton %<>%
group_by(parent, child) %>%
summarize(num_pairs = n()) %>%
ungroup()

Galton %>%
top_n(5) %>%
kable()

parent child num_pairs
67.5 66.2 36
67.5 67.2 38
67.5 69.2 38
68.5 68.2 34
68.5 69.2 48



Taller parents tend to have taller children…
(galton_plot <- Galton %>% ggplot() +

aes(x = parent, y = child, weight = num_pairs) +
geom_point(aes(size = num_pairs)) +
labs(x = "parent height", y = "child height",

size = "number of pairs"))
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… but children appear to regress since slope of the
best fit line is smaller than slope of the identity line

galton_plot +
geom_abline(intercept = 0, slope = 1,

linetype = 2) +
geom_smooth(method = "lm")
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Add line labels with the geomtextpath package
galton_plot +
geom_labelabline(label = "identity line", intercept = 0,

slope = 1, linetype = 2, size = 9,
hjust = .675, vjust = -.3) +

geom_labelsmooth(label = "regression line", method = "lm",
size = 9, hjust = .8, vjust = 1.35)

identity line

regression line
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Add line labels with the geomtextpath package
galton_plot +
geom_labelabline(label = "y = x", intercept = 0,

slope = 1, linetype = 2, size = 9,
hjust = .675, vjust = -.3) +

geom_labelsmooth(label = "y = 46 + .326 x", method = "lm",
size = 9, hjust = .8, vjust = 1.35)

y = x

y = 46 + .326 x
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Why are tall parents likely to have shorter children?

▶ Galton initially thought regression was a force governing natural
selection, opposing the force that creates new species. He later
realized that the force of regression was a statistical artifact:
▷ Children only share some of the factors that made their parents tall.
▷ By selecting tall parents, Galton unknowingly selected parents with

unusual, height-promoting factors.
▷ These factors were less likely to reoccur in these parents’ children,

resulting in shorter heights.

▶ Scientists have since found hundreds of genetic variants that
influence height.
▷ A recent study (2010) reports that more than 80 percent of height is

due to genetic factors and 20 percent is due to environmental factors.

▶ Karl Pearson, Udny Yule, and other statisticians studied the
regression phenomenon mathematically, resulting in the regression
analysis that we teach in statistics courses today.



Karl Pearson (left) and Udny Yule (right)

Source: https://en.wikipedia.org/wiki/Karl_Pearson#/media/File:Karl_Pearson,_1912.jpg
https://en.wikipedia.org/wiki/Udny_Yule#/media/File:George_Udny_Yule.jpg

https://en.wikipedia.org/wiki/Karl_Pearson#/media/File:Karl_Pearson,_1912.jpg
https://en.wikipedia.org/wiki/Udny_Yule#/media/File:George_Udny_Yule.jpg


Pearson assumed a bivariate normal distribution
Recall 𝜌 = Cov(𝑋,𝑌 )

𝜎𝑋𝜎𝑌
, 𝛽1 = Cov(𝑋,𝑌 )

𝜎2
𝑋

= 𝜌 𝜎𝑌
𝜎𝑋

, and 𝛽0 = 𝜇𝑌 − 𝛽1𝜇𝑋.

If
[𝑋
𝑌 ] ∼ Normal ([𝜇𝑋

𝜇𝑌
] , [ 𝜎2

𝑋 𝜌𝜎𝑋𝜎𝑌
𝜌𝜎𝑋𝜎𝑌 𝜎2

𝑌
]) ,

then
𝔼 [𝑌 |𝑋 = 𝑥] = 𝜇𝑌 + 𝜌 𝜎𝑌

𝜎𝑋
(𝑥 − 𝜇𝑋)

= 𝜇𝑌 + 𝛽1(𝑥 − 𝜇𝑋)
= 𝜇𝑌 − 𝛽1𝜇𝑋 + 𝛽1𝑥
= 𝛽0 + 𝛽1𝑥

The regression phenomenon happens when 𝜎𝑋 ≈ 𝜎𝑌 and 𝜌 < 1 because

𝛽1 = 𝜌 𝜎𝑌
𝜎𝑋

≈ 𝜌 < 1



Yule assumed a linear relationship
Yule used least squares to find the linear function of 𝑋 that best fits 𝑌 .

argmin
𝛽0,𝛽1

𝔼[(𝑌 − (𝛽0 − 𝛽1𝑋))2]

He solved the normal equations

{ 0 set= 𝜕
𝜕𝛽0

𝔼[(𝑌 − (𝛽0 − 𝛽1𝑋))2] = 𝔼[(−2(𝑌 − (𝛽0 − 𝛽1𝑋))]
0 set= 𝜕

𝜕𝛽1
𝔼[(𝑌 − (𝛽0 − 𝛽1𝑋))2] = 𝔼[(−2(𝑌 − (𝛽0 − 𝛽1𝑋)𝑋)]

Rearranging the first equation yields 𝛽0 = 𝔼[𝑌 ] − 𝛽1𝔼[𝑋]
Multiplying both sides of the second equation by −2 and substituting the
solution for 𝛽0 results in the equation

0 = 𝔼[𝑋𝑌 ]−(𝛽0)𝔼[𝑋]−𝛽1𝔼[𝑋2] = 𝔼[𝑋𝑌 ]−(𝔼[𝑌 ]−𝛽1𝔼[𝑋])𝔼[𝑋]−𝛽1𝔼[𝑋2]

Rearranging yields 𝛽1 = 𝔼[𝑋𝑌 ]−𝔼[𝑌 ]𝔼[𝑋]
𝔼[𝑋2]−𝔼[𝑋]2 = Cov(𝑋,𝑌 )

𝜎2
𝑋

= 𝜌 𝜎𝑌
𝜎𝑋



Misinterpreting regression may be the most
common statistical error

▶ Unusual observations are often the result of chance (at least in part)
and become usual when measured again in later periods.
▷ successful businesses, low performing students, high crime areas, etc.

▶ The relationship between observations can often be summarized by a
regression line. Two common justifications are that

1. the measurements follow a bivariate normal distribution.
2. a best fit line well approximates their relationship.

▶ Misinterpreting the reversion from unusual to usual is called the
“regression fallacy.”

▷ Despite being documented over 100 years ago, the regression fallacy
is common today.

▷ Milton Friedman (1992) suspected “… the regression fallacy is the
most common fallacy in the statistical analysis of economic data…”
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