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Learning Objectives

After this lecture, you will be able to:
1. Define exponential and logistic growth as stated by Verhulst.

2. Graph exponential and logistic growth curves using the
stat_function and geom_textpath functions from the R packages
ggplot2 and geomtextpath.

3. Fit exponential and logistic growth curves to data with Non-Linear
Least Squares using the nls function. See Appendix for details.

4. Derive the exponential and logistic functions from their respective
differential equations.



These slides use the following R packages

Setup:

library("knitr")
library("tidyverse")
library("geomtextpath")

theme_set (theme_bw(base size = 20))



The logistic function: The law of population growth

P Malthus argued in The Principle of Population (1798) that when
resources are abundant, populations grow at an exponential rate.

> For example, the population of the Thirteen American Colonies
doubled every 23 years between 1610 and 1780.

> But exponential growth cannot continue indefinitely. Limited
resources and other “checks” eventually constrain growth.

P Verhulst derived mathematical equations that describe Malthus'’
findings in his book Mathematical Investigations on the Law of
Population Growth (1845).

> Euler—for whom the constant e is named—had already studied the
exponential growth of populations in 1748.

> Verhulst added a capacity constraint to account for limited resources,
calling his equation logistique (logistic) growth.

> Today, the logistic function is used to describe a wide range of
phenomenon from the onset of rare diseases to the choices made by
economic agents.



Pierre Verhulst, Mathematical Investigations (1845)

RECHERCHES MATHEMATIQUES

LA LOI D’ACCROISSEMENT DE LA POPULATION.

THEORIE GENERALE.

§ 1. De tous les problémes que économie politique offre aux mé-
ditations des philosophes, Pun des plus intéressants est, sans contre-
dit, la connaissance de la loi qui régle les progrés e la population.
Pour le résoudre avec exactitude, il fandrait pouvoir apprécier Iin-
fluence des causes nombreuses qui empéchent ou favorisent la multi-
plication de Pespéue humaine. Bt comme plusicurs do cos causes sont
variables par leur nature et par leur mode d'action , le probléme
considéré dans toute sa généralité, est visiblement insoluble.

10 faut observer cependant, qu'a mesure que la civilisation se

erfectionne, l'influence d p perturbatrices Saffaiblit
de plus en plus, pour laisser dominer lescauses constantes; de manitre
qu'a une certaine époque, il devient permis de faire abstraction des
premiéres, sauf & considérer les données du probléme comme sou-
mises & de 1égéres variations.

Source: https://en.wikipedia.org/wiki/Pierre_Fran%C3%A7ois_Verhulst
https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018


https://en.wikipedia.org/wiki/Pierre_Fran%C3%A7ois_Verhulst
https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018

Growth curves, Mathematical Investigations (1845)

dsymptote
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Source: https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018


https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018

Exponential vs. logistic growth

P Let y, denote the population at time = with 0 < y, < K.
Exponential growth refers to the model:

Yp = e Yo

P Verhulst modified exponential growth, calling it logistic growth:

—1
K —
v, = K (1 + =% e”)
Yo

>> r is called the growth rate, and K is called the capacity constraint.

» When K is large and z and Yo are small, the two functions are
nearly identical.
> As x increases, exponential growth increases without bound.
> In contrast, e”"* goes to 0 as x increases. It follows that logistic
growth essentially stops as the population approaches capacity K.



Exponential vs. logistic growth (r = .06)
ggplot (tibble(x = 1)) + x1im(0, 100) +
labs(x = "year", y = "population") +

geom_textpath(fun = ~ exp(.06 *.x), hjust = .95, size = 5,
stat = "function", label = "exponential growth") +
geom_textpath(stat = "function", size = 5,
fun = ~ 100 / (1 + (100 - 1) / 1 * exp(-.06 * .x)),
label = "logistic growth", hjust = .95)
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Exponential vs. logistic growth (r = .06)
ggplot (tibble(x = 1)) + x1im(0, 100) + scale_y_logl0() +
labs(x = "year", y = "population (log scale)") +

geom_textpath(fun = ~ exp(.06 *.x), hjust = .95, size = 5,
stat = "function", label = "exponential growth") +
geom_textpath(stat = "function", size = 5,
fun = ~ 100 / (1 + (100 - 1) / 1 * exp(-.06 * .x)),
label = "logistic growth", hjust = .95)
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Population of American Colonies 1610 - 1790

USA_prel790 <-
tibble(x = seq(1610, 1780, 10),
c(350, 2302, 4646, 26634, 50368, 75058,

111935, 151507, 210372, 250888, 331711,
466185, 629445, 905563, 1170760, 1593625,
2148076, 2780369))

USA_prel790 %>Y%

top_n(5) %>%

pivot_wider( X,
) h>%h
kable( list( "))

1740 1750 1760 1770 1780
905,563 1,170,760 1,593,625 2,148,076 2,780,369




Population of American Colonies 1610 - 1790
pop_plot <-
USA_prel790 %>%
ggplot () +
aes(x, y) +
labs(x = "year", y = "population")

pop_plot + geom_point()
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Exponential curve fit to Colonies population

exponential = "y ~ exp(x * r) * y_0"
start <- list( 1, log(2) / 24)
nls( exponential, USA_prel790,

start) %>%
coefficients() %>%
t() %%
as_tibble() %>¥%

kable( c("$y_o$", "r"),
2)
Yo r
0 0.03

Interpretation:

1. Population increases ~ 3 percent a year.

2. Population will double approximate every log(2) / 0.03 & 23 years.



If Colonies continued to grow at ~ 3% a year...

pop_plot + geom_point() +
geom_smooth(method = "nls", se = FALSE,
color = "black", linewidth = .5,
formula = exponential,
method.args = list(start = start))
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... population would have hit 3 billion in 2020

pop_plot + geom_point() + x1im(1700, 2020) +
geom_textsmooth(label = "exponential", method = "nls",
formula = expomnential, hjust = .9,
fullrange = T, se = F, size = 5,
method.args = list(start = start))
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Logistic curve fit to Colonies population

logistic <- "y ~ SSlogis(x, Asym, xmid, scal)"
nls(logistic, USA_prel790) %>%
coefficients() %>%
tO %%
as_tibble() %>%

transmute (" = Asym / (1 + exp(xmid / scal)),
Asym,
1/scal) %>%
kable ( 2,
list( ","))
Yo K r

0 15,100,062 0.03

Interpretation:

1. Population increases first at ~ 3 percent a year, slowing thereafter.

2. Population will reach a maximum capacity at 15 million.



If r ~ 3% growth with ~ 15,000,000 capacity...

pop_plot + geom_point() +
geom_smooth(method = "nls", formula = logistic,
se = FALSE, color = "black", linewidth = .5)
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... population would be close to capacity by 1920

pop_plot <- pop_plot + x1im(1600, 2020) +
geom_textsmooth(label = "logistic", formula = logistic,
hjust = .9, fullrange = T, size = 5,
method = "nls", se = F)

pop_plot + geom_point()
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Colonies population: exponential vs. logistic growth

(pop_plot <- pop_plot + coord_trans(y = "loglO") +
geom_textsmooth(label = "exponential", method = "nls",
formula = exponential, hjust = .9, fullrange = T,

size = 5, se = F, method.args = list(start = start)) +
scale_y_continuous(name = "population (log scale)",
br = 107¢(5,7,9), mi = 107c(4,6,8)) + x1im(1600,2020))
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Derivation of exponential growth

P Exponential growth y, = €"® g, is the solution to the separable
differential equation

et A 1
T = Ve (1)

P This differential equation can be solved by separation of variables:
Equation (1) is “rewritten” as y,'dy = rdz

P> Integrating the left side with respect to y and the right side with
respect to z yields log(y,,) = ra + c¢. Solving for y,. results in
Yy = emc+c
€T

P Since y, = €, ¢ = log(y,), and thus y, = €"* y,



Derivation of logistic growth

-1
P Logistic growth y, = K (1 + Ky;oyo e’”) is the solution to the
seperable differential equation

P> This differential equation can be solved by separation of variables:

Equation (2) is "rewritten” as [y, (1 — %)}—1 dy = rdx

> Note that the left side is equal to [y, — (y, — K) ] dy
P> Integrating the left side with respect to y and the right side with respect

to x yields log(y,) — log(y, — K) = ra + ¢. Solving for y, results in
y, = K (1—erava) ™

P Sincey, = K(1—e°)!, c=—log (yo?;oK), and thus
-1
y, = K (14520 o)



U.S. population 1790 - 2020 (Decennial Census)

USA <-
tibble(

seq(1790, 2020, 10),

c (3929214, 5308483, 7239881, 9638453,
12866020, 17069453, 23191876, 31443321,
38558371, 50189209, 62979766, 76212168,
92228496, 106021537, 123202624, 132164569,
151325798, 179323175, 203211926, 226545805,
248709873, 281421906, 308745538, 331449281))

USA %>%
top_n(5) %>%
pivot_wider( X, V) %>h
kable ( list( "))
1980 1990 2000 2010 2020

226,545,805 248,709,873 281,421,906 308,745,538 331,449,281




U.S. population: growth historically closer to
exponential but appears to be reaching capacity

pop_plot +
geom_textline(label = "actual",
data = USA,
hjust = .9, size = 5)
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U.S. population 1790 - 2020 (Decennial Census)

logistic <- "y ~ SSlogis(x, Asym, xmid, scal)"
nls(logistic, Usa) %W>%

coefficients() %>%

tO %%

as_tibble() %>%

transmute (" = Asym / (1 + exp(xmid / scal)),
Asym,
1/scal) %>%
kable ( 2,
list( ","))
Yo K r

0 499,344,363 0.02

Interpretation:

1. Population increases first at ~ 2 percent a year, slowing thereafter.

2. Population will reach a maximum capacity at 500 million.



Why didn’t the U.S. reach capacity as predicted?

P Malthus believed limited resources constrain population growth.
> He argued overpopulation inevitably leads to war or famine.

> Though not the first to make this argument, the timing of his work
after the American and French revolutions made it extremely popular

P Many have resurrected Malthus’ argument over the years.

> Pearl and Reed (1920) warned that agriculture production was not
keeping pace with population growth. Initially unaware of Verhulst,
they rediscovered the logistic growth curve.

> More recently, Erlich predicted in The Population Bomb (1968) that
hundreds of millions of people would starve to death in the 1970s.

P Doomsday predictions such as these have not (yet) come to fruition.

>> Largely due to industrialization and expansion in the 1800s and the
Green Revolution that increased crop harvests in the 1970s.

> While population growth does stress environments, public concern is
often elevated during periods of xenophobia.



Verhulst’s legacy and the logistic function today

P> Verhulst died in 1849 at the age of 45, four years after the
publication of Mathematical Investigations on the Law of Population
Growth.

> The logistic function was rediscovered several times before Verhulst's
work finally reached a wide audience.

P The frequent rediscovery of the logistic function is likely due to the
regularity with which it occurs in the study of statistics.

> For example, the logistic function arises naturally in the study of the
binomial distribution and is commonly used in logistic regression and
artificial neural networks.

>> It also has a variety of special properties that make it ideal for
studying a wide range of phenomenon, from the onset of rare
diseases to the choices made by economic agents.
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Appendix: Non-Linear Least Squares

P Exponential and logistic growth are examples of nonlinear models.
> Let y, = f,(0) denote population growth.
> For example, if f, = €™ y,, then § = {r,y,}
> Non-Linear Least Squares: mgin Soilye, — £, (0)

P Just like Least Squares, we solve % Ez[yxl — f% (0))? <.

P But unlike Least Squares, § cannot usually be expressed as a
function of y,,and z; in closed form. Instead, 0 is often calculated
using the Gauss—Newton algorithm:

1. We make an initial guess of the parameter values, §(*)

2. We repeatedly update our guess using the formula:

0+ = o) 4 (JTJ) Ty

where residual vector r = [yl1 fo (0), Yy, — [0, (0), ... ]T and
Jacobian matrix J;; = [ — fy,(0 ;)]? are evaluated at o)



