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Learning Objectives

After this lecture, you will be able to:

1. Define exponential and logistic growth as stated by Verhulst.

2. Graph exponential and logistic growth curves using the
stat_function and geom_textpath functions from the R packages
ggplot2 and geomtextpath.

3. Fit exponential and logistic growth curves to data with Non-Linear
Least Squares using the nls function. See Appendix for details.

4. Derive the exponential and logistic functions from their respective
differential equations.



These slides use the following R packages

Setup:
library("knitr")
library("tidyverse")
library("geomtextpath")
theme_set(theme_bw(base_size = 20))



The logistic function: The law of population growth
▶ Malthus argued in The Principle of Population (1798) that when

resources are abundant, populations grow at an exponential rate.
▷ For example, the population of the Thirteen American Colonies

doubled every 23 years between 1610 and 1780.

▷ But exponential growth cannot continue indefinitely. Limited
resources and other “checks” eventually constrain growth.

▶ Verhulst derived mathematical equations that describe Malthus’
findings in his book Mathematical Investigations on the Law of
Population Growth (1845).
▷ Euler—for whom the constant e is named—had already studied the

exponential growth of populations in 1748.

▷ Verhulst added a capacity constraint to account for limited resources,
calling his equation logistique (logistic) growth.

▷ Today, the logistic function is used to describe a wide range of
phenomenon from the onset of rare diseases to the choices made by
economic agents.



Pierre Verhulst, Mathematical Investigations (1845)

Source: https://en.wikipedia.org/wiki/Pierre_Fran%C3%A7ois_Verhulst
https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018

https://en.wikipedia.org/wiki/Pierre_Fran%C3%A7ois_Verhulst
https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018


Growth curves, Mathematical Investigations (1845)

Source: https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018

https://gdz.sub.uni-goettingen.de/id/PPN129323640_0018


Exponential vs. logistic growth

▶ Let 𝑦𝑥 denote the population at time 𝑥 with 0 ≤ 𝑦0 ≤ 𝐾.
Exponential growth refers to the model:

𝑦𝑥 = 𝑒𝑟𝑥 𝑦0

▶ Verhulst modified exponential growth, calling it logistic growth:

𝑦𝑥 = 𝐾 (1 + 𝐾 − 𝑦0
𝑦0

𝑒−𝑟𝑥)
−1

▷ 𝑟 is called the growth rate, and 𝐾 is called the capacity constraint.

▶ When 𝐾 is large and 𝑥 and 𝑦0 are small, the two functions are
nearly identical.
▷ As 𝑥 increases, exponential growth increases without bound.

▷ In contrast, 𝑒−𝑟𝑥 goes to 0 as 𝑥 increases. It follows that logistic
growth essentially stops as the population approaches capacity 𝐾.



Exponential vs. logistic growth (r = .06)
ggplot(tibble(x = 1)) + xlim(0, 100) +
labs(x = "year", y = "population") +
geom_textpath(fun = ~ exp(.06 *.x), hjust = .95, size = 5,

stat = "function", label = "exponential growth") +
geom_textpath(stat = "function", size = 5,

fun = ~ 100 / (1 + (100 - 1) / 1 * exp(-.06 * .x)),
label = "logistic growth", hjust = .95)
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Exponential vs. logistic growth (r = .06)
ggplot(tibble(x = 1)) + xlim(0, 100) + scale_y_log10() +
labs(x = "year", y = "population (log scale)") +
geom_textpath(fun = ~ exp(.06 *.x), hjust = .95, size = 5,

stat = "function", label = "exponential growth") +
geom_textpath(stat = "function", size = 5,

fun = ~ 100 / (1 + (100 - 1) / 1 * exp(-.06 * .x)),
label = "logistic growth", hjust = .95)
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Population of American Colonies 1610 - 1790

USA_pre1790 <-
tibble(x = seq(1610, 1780, 10),

y = c(350, 2302, 4646, 26634, 50368, 75058,
111935, 151507, 210372, 250888, 331711,
466185, 629445, 905563, 1170760, 1593625,
2148076, 2780369))

USA_pre1790 %>%
top_n(5) %>%
pivot_wider(names_from = x,

values_from = y) %>%
kable(format.args = list(big.mark = ","))

1740 1750 1760 1770 1780
905,563 1,170,760 1,593,625 2,148,076 2,780,369



Population of American Colonies 1610 - 1790
pop_plot <-
USA_pre1790 %>%
ggplot() +
aes(x, y) +
labs(x = "year", y = "population")

pop_plot + geom_point()
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Exponential curve fit to Colonies population
exponential = "y ~ exp(x * r) * y_0"
start <- list(y_0 = 1, r = log(2) / 24)
nls(formula = exponential, data = USA_pre1790,

start = start) %>%
coefficients() %>%
t() %>%
as_tibble() %>%
kable(col.names = c("$y_0$", "r"),

digits = 2)

𝑦0 r
0 0.03

Interpretation:

1. Population increases ≈ 3 percent a year.
2. Population will double approximate every log(2) / 0.03 ≈ 23 years.



If Colonies continued to grow at ≈ 3% a year…
pop_plot + geom_point() +
geom_smooth(method = "nls", se = FALSE,

color = "black", linewidth = .5,
formula = exponential,
method.args = list(start = start))
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… population would have hit 3 billion in 2020
pop_plot + geom_point() + xlim(1700, 2020) +
geom_textsmooth(label = "exponential", method = "nls",

formula = exponential, hjust = .9,
fullrange = T, se = F, size = 5,
method.args = list(start = start))

ex
po

ne
nt

ia
l

0e+00

1e+09

2e+09

3e+09

1700 1800 1900 2000
year

po
pu

la
tio

n



Logistic curve fit to Colonies population
logistic <- "y ~ SSlogis(x, Asym, xmid, scal)"
nls(logistic, data = USA_pre1790) %>%
coefficients() %>%
t() %>%
as_tibble() %>%
transmute(`$y_0$` = Asym / (1 + exp(xmid / scal)),

K = Asym,
r = 1/scal) %>%

kable(digits = 2,
format.args = list(big.mark = ","))

𝑦0 K r
0 15,100,062 0.03

Interpretation:

1. Population increases first at ≈ 3 percent a year, slowing thereafter.
2. Population will reach a maximum capacity at 15 million.



If 𝑟 ≈ 3% growth with ≈ 15,000,000 capacity…

pop_plot + geom_point() +
geom_smooth(method = "nls", formula = logistic,

se = FALSE, color = "black", linewidth = .5)
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… population would be close to capacity by 1920
pop_plot <- pop_plot + xlim(1600, 2020) +
geom_textsmooth(label = "logistic", formula = logistic,

hjust = .9, fullrange = T, size = 5,
method = "nls", se = F)

pop_plot + geom_point()
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Colonies population: exponential vs. logistic growth
(pop_plot <- pop_plot + coord_trans(y = "log10") +

geom_textsmooth(label = "exponential", method = "nls",
formula = exponential, hjust = .9, fullrange = T,
size = 5, se = F, method.args = list(start = start)) +

scale_y_continuous(name = "population (log scale)",
br = 10^c(5,7,9), mi = 10^c(4,6,8)) + xlim(1600,2020))
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Derivation of exponential growth

▶ Exponential growth 𝑦𝑥 = 𝑒𝑟𝑥 𝑦0 is the solution to the separable
differential equation

𝑑𝑦
𝑑𝑥 = 𝑟𝑦𝑥 (1)

▶ This differential equation can be solved by separation of variables:
Equation (1) is “rewritten” as 𝑦−1

𝑥 𝑑𝑦 = 𝑟𝑑𝑥

▶ Integrating the left side with respect to 𝑦 and the right side with
respect to 𝑥 yields log(𝑦𝑥) = 𝑟𝑥 + 𝑐. Solving for 𝑦𝑥 results in
𝑦𝑥 = 𝑒𝑟𝑥+𝑐

▶ Since 𝑦0 = 𝑒𝑐, 𝑐 = log(𝑦0), and thus 𝑦𝑥 = 𝑒𝑟𝑥 𝑦0



Derivation of logistic growth
▶ Logistic growth 𝑦𝑥 = 𝐾 (1 + 𝐾−𝑦0

𝑦0
𝑒−𝑟𝑥)−1

is the solution to the
seperable differential equation

𝑑𝑦
𝑑𝑥 = 𝑟𝑦𝑥 (1 − 𝑦𝑥

𝐾 ) (2)

▶ This differential equation can be solved by separation of variables:
Equation (2) is ”rewritten” as [𝑦𝑥 (1 − 𝑦𝑥

𝐾 )]−1 𝑑𝑦 = 𝑟𝑑𝑥

▷ Note that the left side is equal to [𝑦−1
𝑥 − (𝑦𝑥 − 𝐾)−1] 𝑑𝑦

▶ Integrating the left side with respect to 𝑦 and the right side with respect
to 𝑥 yields log(𝑦𝑥) − log(𝑦𝑥 − 𝐾) = 𝑟𝑥 + 𝑐. Solving for 𝑦𝑥 results in
𝑦𝑥 = 𝐾 (1 − 𝑒−(𝑟𝑥+𝑐))−1

▶ Since 𝑦0 = 𝐾(1 − 𝑒−𝑐)−1, 𝑐 = −log ( 𝑦0−𝐾
𝑦0

), and thus

𝑦𝑥 = 𝐾 (1 + 𝐾−𝑦0
𝑦0

𝑒−𝑟𝑥)−1



U.S. population 1790 - 2020 (Decennial Census)
USA <-
tibble(
x = seq(1790, 2020, 10),
y = c(3929214, 5308483, 7239881, 9638453,

12866020, 17069453, 23191876, 31443321,
38558371, 50189209, 62979766, 76212168,
92228496, 106021537, 123202624, 132164569,
151325798, 179323175, 203211926, 226545805,
248709873, 281421906, 308745538, 331449281))

USA %>%
top_n(5) %>%
pivot_wider(names_from = x, values_from = y) %>%
kable(format.args = list(big.mark = ","))

1980 1990 2000 2010 2020
226,545,805 248,709,873 281,421,906 308,745,538 331,449,281



U.S. population: growth historically closer to
exponential but appears to be reaching capacity

pop_plot +
geom_textline(label = "actual",

data = USA,
hjust = .9, size = 5)
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U.S. population 1790 - 2020 (Decennial Census)
logistic <- "y ~ SSlogis(x, Asym, xmid, scal)"
nls(logistic, data = USA) %>%
coefficients() %>%
t() %>%
as_tibble() %>%
transmute(`$y_0$` = Asym / (1 + exp(xmid / scal)),

K = Asym,
r = 1/scal) %>%

kable(digits = 2,
format.args = list(big.mark = ","))

𝑦0 K r
0 499,344,363 0.02

Interpretation:

1. Population increases first at ≈ 2 percent a year, slowing thereafter.
2. Population will reach a maximum capacity at 500 million.



Why didn’t the U.S. reach capacity as predicted?

▶ Malthus believed limited resources constrain population growth.
▷ He argued overpopulation inevitably leads to war or famine.
▷ Though not the first to make this argument, the timing of his work

after the American and French revolutions made it extremely popular

▶ Many have resurrected Malthus’ argument over the years.
▷ Pearl and Reed (1920) warned that agriculture production was not

keeping pace with population growth. Initially unaware of Verhulst,
they rediscovered the logistic growth curve.

▷ More recently, Erlich predicted in The Population Bomb (1968) that
hundreds of millions of people would starve to death in the 1970s.

▶ Doomsday predictions such as these have not (yet) come to fruition.
▷ Largely due to industrialization and expansion in the 1800s and the

Green Revolution that increased crop harvests in the 1970s.
▷ While population growth does stress environments, public concern is

often elevated during periods of xenophobia.



Verhulst’s legacy and the logistic function today

▶ Verhulst died in 1849 at the age of 45, four years after the
publication of Mathematical Investigations on the Law of Population
Growth.
▷ The logistic function was rediscovered several times before Verhulst’s

work finally reached a wide audience.

▶ The frequent rediscovery of the logistic function is likely due to the
regularity with which it occurs in the study of statistics.
▷ For example, the logistic function arises naturally in the study of the

binomial distribution and is commonly used in logistic regression and
artificial neural networks.

▷ It also has a variety of special properties that make it ideal for
studying a wide range of phenomenon, from the onset of rare
diseases to the choices made by economic agents.
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Appendix: Non-Linear Least Squares
▶ Exponential and logistic growth are examples of nonlinear models.

▷ Let 𝑦𝑥 = 𝑓𝑥(𝜃) denote population growth.
▷ For example, if 𝑓𝑥 = 𝑒𝑟𝑥 𝑦0, then 𝜃 = {𝑟, 𝑦0}
▷ Non-Linear Least Squares: min

𝜃
∑𝑖[𝑦𝑥𝑖 − 𝑓𝑥𝑖(𝜃)]2

▶ Just like Least Squares, we solve 𝜕
𝜕𝜃 ∑𝑖[𝑦𝑥𝑖

− 𝑓𝑥𝑖
(𝜃)]2 𝑠𝑒𝑡= 0.

▶ But unlike Least Squares, 𝜃 cannot usually be expressed as a
function of 𝑦𝑥𝑖

and 𝑥𝑖 in closed form. Instead, 𝜃 is often calculated
using the Gauss-Newton algorithm:

1. We make an initial guess of the parameter values, 𝜃(0)

2. We repeatedly update our guess using the formula:

𝜃(𝑡+1) = 𝜃(𝑡) + (𝐽𝑇 𝐽)−1𝐽𝑇 𝑟

where residual vector 𝑟 = [𝑦𝑥1
− 𝑓𝑥1

(𝜃), 𝑦𝑥2
− 𝑓𝑥2

(𝜃), . . . ]𝑇 and
Jacobian matrix 𝐽𝑖𝑗 = 𝜕

𝜕𝜃𝑗
[𝑦𝑥𝑖

− 𝑓𝑥𝑖
(𝜃𝑗)]2 are evaluated at 𝜃(𝑡).


